Cost-Aware Multimedia Data Allocation for Heterogeneous Memory Using Genetic Algorithm in Cloud Computing

Keke Gai, Student Member, IEEE, Meikang Qiu, Member, IEEE, Hui Zhao Student Member, IEEE

Abstract—Recent expansions of Internet-of-Things (IoT) applying cloud computing have been growing at a phenomenal rate. As one of the developments, heterogeneous cloud computing has enabled a variety of cloud-based infrastructure solutions, such as multimedia big data. Numerous prior researches have explored the optimizations of on-premise heterogeneous memories. However, the heterogeneous cloud memories are facing constraints due to the performance limitations and cost concerns caused by the hardware distributions and manipulative mechanisms. Assigning data tasks to distributed memories with various capacities is a combinational NP-hard problem. This paper focuses on this issue and proposes a novel approach, Cost-Aware Heterogeneous Cloud Memory Model (CAHCM), aiming to provision a high performance cloud-based heterogeneous memory service offerings. The main algorithm supporting CAHCM is Dynamic Data Allocation Advance (2DA) Algorithm that uses genetic programming to determine the data allocations on the cloud-based memories. In our proposed approach, we consider a set of crucial factors impacting the performance of the cloud memories, such as communication costs, data move operating costs, energy performance, and time constraints. Finally, we implement experimental evaluations to examine our proposed model. The experimental results have shown that our approach is adoptable and feasible for being a cost-aware cloud-based solution.

Index Terms—Cloud computing, genetic algorithm, heterogeneous memory, data allocation, multimedia big data

1 INTRODUCTION

The advance of cloud computing has motivated a variety of explorations in information retrieval for big data informatics in recent years. Heterogeneous clouds are considered a fundamental solution for the performance optimizations within different operating environments when the data processing task becomes a challenge in multimedia big data [1], [2]. The growing demands of multimedia big data have driven the increasing amount of cloud-based applications in Internet-of-Things (IoT). Combining heterogeneous embedded systems with cloud-oriented services can enable various advantages in multimedia big data. Currently, cloud-based memories are mostly deployed in a non-distributive manner on the cloud side [3]. This deployment causes a number of limitations, such as overloading energy, additional communications, and lower performance resource allocation mechanism, which restricts the implementations of the cloud-based heterogeneous memories [4]–[6]. This paper concentrates on this issue and proposes an innovative data allocation approach for minimizing total costs of the distributed heterogeneous memories in cloud systems.

Contemporary cloud infrastructure deployments mainly mitigate data processing and storage to the clouds [7]. Central Processing Units (CPU) and memories offering processing services are hosted by individual cloud vendors. This type of deployment can meet the processing and analysis demands for those smaller sized data [8]–[10]. The incontinuous or periodically changeable implementations of the big data-oriented usage have caused bottlenecks for constructing firm performances [11]. For example, some data processing tasks are tightly associated with the industrial trends or operations, such as annual accounting and auditing [12], [13]. Therefore, a flexible approach meeting dynamic usage switches has become an urgent requirement in high performance multimedia big data.

Moreover, another challenge is that deploying distributed memories in clouds is still facing a few restrictions [14], [15]. Allocating data to multiple cloud-based memories results in obstacles due to the diverse impact factors and parameters [16]. The divergent configurations and varied capabilities can limit the entire system’s performance since a naive task separation is inefficient to fully operate heterogeneous memories. It implies that minimizing the entire cost of using cloud memories is restricted by multiple dimensional constraint conditions.

To address the main challenge, we propose a novel approach entitled Cost-Aware Heterogeneous Cloud Memory (CAHCM) Model, which aims to achieve a reduced data processing time
Fig. 1. The architecture of cloud-based heterogeneous memory using data allocation techniques in big data

through heterogeneous cloud memories for efficient Memory-as-a-Service (MaaS). The costs can be any expenditures during the operations, such as energy, time, and communication sources [17], [18]. Fig. 1 represents the architecture of cloud-based heterogeneous memory in which our proposed model will be applied. The operating principle of the proposed model is using genetic algorithm to minimize the processing costs via mapping data processing capabilities for different datasets inputs. The operating flow is based on the distributed parallel computations in heterogeneous memories located in various cloud vendors. The task assignments are completed by a data allocation operation in which tasks are assigned to cloud memories based on the mapping of the memory capabilities to the input data.

For supporting the proposed model, we propose an algorithm, Dynamic Data Allocation Advance (2DA) Algorithm, which is designed to obtain the minimum total costs using genetic algorithm. Implementing 2DA enables a dynamic data allocation to heterogeneous cloud memories with varied capacities. We consider a group of crucial factors that can impact on the costs when using cloud-based distributed heterogeneous memories, such as communication costs, data move operating costs, energy performance, and time constraints. The target of the proposed algorithm is to provide data allocation mechanism gaining the minimum computing costs.

The significance of this research is that the findings introduce a new approach for solving big data problems that request the scaled up capability memories deployed in clouds. Using our proposed scheme can facilitate a high performance of the efficiency in generating solutions to data allocations, which is a NP-hard problem. The main contributions of our research mainly include three aspects:

1) We venture to solve the cost optimization problem on heterogeneous memories in a polynomial time, which is a NP-hard problem. The outcomes are optimal solutions under certain constraints and suboptimal solutions with non-constraint.

2) The proposed model is an attempt in using heterogeneous cloud memories to solve multimedia big data problems by dynamically allocate data to various cloud resources.

3) We produce an approach that can be used to increase the entire usage rate of the cloud infrastructure along with the enhancement of the computation capability, which is also an approach for generating an optimized data processing mechanism in cloud-based multimedia data processing.

The remainder of the paper is organized by the follows. Section 2 reviews recent academic works in the relative fields. Next, we express a motivational example concerning the application of the proposed model in a simple implementation scenario in Section 3. Furthermore, main concepts and the proposed model statements are given in Section 4. Moreover, in Section 5, we provide detailed descriptions about the proposed algorithm. In addition, experimental evaluations are stated in Section 6, which configures the experimental settings and exhibits some experimental findings. Finally, we conclude the research in Section 7.

2 RELATED WORK

This section has reviewed two crucial aspects related to our research, including multimedia big data and cloud resource management for multimedia in cloud computing. Investigations in these two hemispheres are theoretical supports for our research background.

2.1 Multimedia Big Data

Multimedia big data is a new technical term describing big data mechanisms applied in the multimedia field. We focus on the computation workload dimension even though a few other concentrations have been addressed by the prior researches.

First, the high performance-oriented data mining is one research direction in multimedia big data. One research was explored to prove that social images shared on cloud-based multimedia had a high level of similarities when users are socially connected [19], [20]. This research was an attempt of using multimedia to further expand the outcomes of big sized data mining. Next, data-oriented scheduling was also
an alternative for enhancing the computation capability by applying resource scheduling algorithms [21], [22]. However, the computation workloads were not considered in this research, which was the main bottleneck for increasing the performance of the multimedia big data. Most data mining techniques can be directly used in multimedia big data field [23]. But the processing efficiency was a challenging issue due to the data size feature of the multimedia.

To address this challenge, a variety of preprocessing techniques have been examined by recent researches as well. One data preprocessing operation was configured in wireless multimedia sensor networks by deleting those data that have less impact on the results [24]. Computing the data having higher-level weights can obtain approximate solutions [25]. Some other data mining uses time series the determine the weights of the data by predictions [26]. However, this approach highly depends on the fault tolerance rate. The approach cannot ensure the accuracy if the rate is well configured even though the computation workload is reduced. Our work focuses on producing an innovative data allocation method for improving efficiency without reducing workloads.

Moreover, the feature selection was a research direction that could be used to eliminate those data with less data mining values. For example, an approach was proposed to use different constraints for re-ranking the image features [27]. This technique was also combined with Web services [23]. Despite many advantages of feature selections, this type of solutions is still attached to the software side. The computation speed was not increased, such that the balance of computation workload and outcome quality is still the critical part in this research direction. Our work targets at increasing the computation speed by optimizing the method of data allocations.

Therefore, most previous research work has addressed the software improvement for multimedia big data rather than the hardware side. Our research focuses on using cloud-based memories by deploying distributed heterogeneous computing resources.

2.2 Resource Management for Multimedia in Cloud Computing

Computing resources on cloud computing are deployed in a distributive manner. The approach of maximizing cloud resources has been explored by recent researches in different perspectives.

First, interconnecting various clouds has become a popular research topic in cloud computing. The relations between nodes in cloud computing are considered as one of the crucial aspects in increasing the entire system’s performance [28], such as in Internet of Things (IoT). Prior researches have addressed a few dimensions increasing the system’s performance. One of the crucial aspects in cost-aware approaches was saving energy by applying scheduling algorithms on Virtual Machines (VMs) [29], [30]. This type of optimizations mainly depends on the availability of the parameters for mapping cost requirements. Our proposed approach also requires a few parameters for the purpose of resource management, such as the amount of data reads and writes.

Moreover, from the perspective of security and forensics, resource management in cloud computing is considered an option of maximizing the security level by applying multiple constraints via VMs [31], [32]. Combining various inspection approaches on multiple VMs can increase the threat detection capability [33]. Correspondingly, the cost of the implementations will become greater while the amount of VMs increases [34]. The optimizations usually address the provisions of the heterogeneous computing from distributed resources [35]. However, solving the resource management problem is still challenging when the number of the parameters or variables grows. It results in the difficulties of gain an adaptable solution that can be completed in a polynomial time. In the perspective, our research proposes an adaptive method that can ensure a high-efficiency of resource management method generations.

Furthermore, cloud task scheduling was also a research direction in resource management for big data. One recent optimization dimension was using iterative ordinal optimizations to adapt dynamic workloads in cloud computing [36]. This research aimed to gain sub-optimal scheduling solutions by optimizing each iteration. Meanwhile, some other scheduling optimizations focused on reducing the latency and constraints caused by bandwidths and data diversity [37]. A similar research focusing on reducing data transfer workloads used data partition techniques for optimizations. However, most prior researches did not consider implementing heterogeneous cloud computing such that the potential optimizations were ignored.

Therefore, in our research, we concentrated on a crucial research dimension that had rarely been addressed by the prior researches. Applying the heterogeneous memory in cloud computing is an approach to increase cloud service efficiency and its challenge is data allocations to diverse memories. The target addressed by our research is producing a method that can efficiently produce data allocation plans with minimum costs.

3 Motivational Example

We give a motivational example for clarifying the operational processes of CAHCM in this section. Assume that there are four cloud vendors offering MaaS with different performances, namely M_1, M_2, M_3, and M_4. Table 1 displays the costs for different cloud memory operations.

As shown in Table 1, we consider four main costs that include *Read* (R), *Write* (W), *Communications* (C), and *Move* (MV). R and W refer to the operation costs of reading and writing data. C means the costs happened to communication processes through the Internet. MV represents the costs taken place at the occasions when switching from one memory vendor to another set. β is a criterion for memory limits. There are two working modes based on βs, including a normal working status and an over limit status. Table 2 represents different performance critical points for different cloud memory limits.

According to Table 2, cloud memories have different memory service offerings. For example, M_1 has a critical capability
Assume that the initialized data allocations are $A \rightarrow M_2$, $B \rightarrow M_2$, $C \rightarrow M_4$, $D \rightarrow M_2$, $E \rightarrow M_3$, $F \rightarrow M_4$, and $G \rightarrow M_3$. The costs of allocating each data to memory units are given in Table 4. This table is called B Table, which is used to mapping all the costs for all potential activities of the data.

The mapped the costs and the number of accesses match the conditions of our proposed model. Thus, we remap the data that are shown in Table 5. The remapping table is named as D Table, which is used to generate optimized memory selections based on the data from B Table. There are two steps in the remapping process. First, we sort the data in an ascending order by summing up the number of Read and Write. For example, A is 13 deriving from $(7+6)$, which is shown in the table. The next step is sorting the cost by the memory index number for each data. We assign an index number to each memory by $1 \rightarrow M_1$, $2 \rightarrow M_2$, $3 \rightarrow M_3$, and $4 \rightarrow M_4$. We sort the index for each data according to the costs of the data allocations given in Table 4.

According to the memory availability, we always select the lowest costs first, from the left side to the right side in the table. For example, in Table 4, the data allocation costs for data A are respectively $77 (M_1)$, $48 (M_2)$, $34 (M_3)$, and $700 (M_4)$. The sorted order for A is M_3, M_2, M_1, and M_4 in Table 5.

Based on the remapping, we select memories for each data, which starts with the top of the table to the bottom. According to the memory availability, we always select the lowest cost from the available memories, from the left to right shown in Table 5. Furthermore, an adjustment will be made after a calculation of the proposed genetic algorithm. In this motivational example, using our proposed approach can generate an optimal solution as $A \rightarrow M_3$, $B \rightarrow M_2$, $C \rightarrow M_3$, $D \rightarrow M_1$, $E \rightarrow M_2$, $F \rightarrow M_4$ and $G \rightarrow M_1$ with the total cost 290. Compare with First-In-First-Out (FIFO) algorithm, our approach reduces 96.5% cost in this case. Compare with Greedy algorithm, our approach can reduce 3.7% cost in this example.

4 Concepts and the Proposed Model

We demonstrate the proposed model and define the main concepts used in the model in this section. The operating principle of the model is given along with the proof in this section.

4.1 Execution Model and Definition

The execution model is based on the architecture represented in Fig. 1. Before the data are assigned to cloud memories, the entire input data need to be partitioned, which have been addressed by the prior researches [38]–[40]. In our proposed
model, we assume that the data partitions are processed, after which the information of data operations in each cloud memory is gained. The task addressed by the proposed CAHCM is to execute data allocations for minimizing the total costs.

Definition 1. Cost Optimization Problem on Heterogeneous Memories (COPHM): Given the initial status of input data and the cloud-based heterogeneous memories’ capacities, including the number of data, the number of Read and Write accesses, the number of memories and availabilities, the costs of Read and Write for each memory, the costs of the Move between memories, critical points of the memories. The aimed problem is to find out the data allocation solution optimally minimizing the total cost.

The inputs are the initial data allocations as well as memories’ availabilities, costs, and capacities. Align with the problem definition, main inputs include the number of data, the required Read and Write access amounts, available memories’ number as well as the costs for Read, Write, and the Move between memories, the initial locations of the data, data sizes, and critical points for each memory. The output is a data allocation scheme based on the available cloud memories provisioning the optimal solution for minimizing total costs.

Moreover, the crucial component of CAHCM is that the task assignments to heterogeneous memories offered by distinct cloud vendors based on the memories’ availabilities, costs, and capabilities. Compare with the traditional on-premises memories, the cloud memories system provides a manageable and scalable access scheme based on the offerings of cloud providers. In our model, the task assignment process includes two steps, which are mapping costs and task assignments. Fig. 2 represents an operation flow model of CAHCM model.

![Fig. 2. Operation flow model of Cost-Aware heterogeneous cloud memory model](image)

According to Fig. 2, at the first step, the costs are mapped mainly deriving from three categories of information. The Memory Availability refers to the availabilities of the memories, which may include amount, time, connection status, and locations. The Memories Costs is the consumption information corresponding to each available memory and the corresponding table in Section 3 is Table 1. Other Costs means the costs caused from other computing resources except the costs deriving from memories or operations between memories, such as transmission losses. For example, a Move cost is one of the costs that need to be considered. In addition, the data allocation plan is generated at the second step, which is mainly supported by our proposed algorithm, 2DA algorithm. Two sub-tasks form this step. First, an initial plan is created by using Greedy algorithm. Second, an improved data allocation plan is created by implementing the genetic algorithm, such that the task assignment may be adjusted. The following section provides the problem statement.

4.2 Problem Statement

The calculations of the total cost need to consider the cloud memories’ capabilities [5]. The limits are determined by β that maps the critical capability points for different memories, which is aligned with COPHM problem defined by Definition 1 in Section 4.1. To address the cost minimizations, we formulate the cost calculation method shown in Eq. 2:

\[
C_{Total} = \sum_{i=1}^{n} C(i) = \sum_{i=1}^{n} (C_{i}^{R} \times N_{i}^{R} + C_{i}^{W} \times N_{i}^{W} + C_{i}^{MV} + C_{i}^{Other})
\]

The total cost is a sum of all memories’ costs with four types of costs. As shown in Eq. 2, \(C_{Total} \) refers to the total cost. The sum of all memories’ costs is \(\sum_{i=1}^{n} C(i) \) showing there are \(i \) memories operated in the data processing. \(C_{i}^{R} \) refers to the cost of Read and \(N_{i}^{R} \) refers to the number of the Read. Correspondingly, \(C_{i}^{W} \) refers to the cost of Write and \(N_{i}^{W} \) refers to the number of the Write. \(C_{i}^{MV} \) refers to the cost of data moves and \(C_{i}^{Other} \) refers to other costs, such as networking communications. The target of our proposed approach is minimizing the value of \(C_{Total} \).

Moreover, for comparing the costs, normally a traversing search is required. Assume that there are \(m \) memories in total and \(d \) data. \(P(m, d) = \binom{m}{d} \) where \(d \leq m \). The minimum cost can be found from a permutation of \(P(m, d) \). Using this information, the heterogeneous memories can construct a few bins such that each bin can refer to one memory. The volume of bins is memories’ capacities, the items are input data, and the values are costs of data operations. In addition, we consider minimizing the total costs such that COPHM problem can be reducible to Bin Packing Problem (BPP) that is a combinatorial NP-hard problem [41], [42]. Therefore, COPHM problem is also a NP-hard problem, \(BPP_{\leq p} \) COPHM.

Our proposed approach can gain optimal solutions within the constraint conditions and suboptimal solutions under the non-constraint environment.

4.3 Optimal Constraints for Genetic Algorithm

Our work has found that using Greedy algorithm could provide optimal solutions under certain constraints and suboptimal solutions in other situations. Being aware of the optimal solution constraint is the critical component for achieving
optimal solutions. It means that an adjustment needs to be
done in order to improve the sub-optimal solution to being
the optimal solution. We present an approach of overcoming
the optimal solution constraint by applying genetic algorithm; thus,
our proposed CAHCM is designed to achieve a high rate of
producing optimal solutions. The proposed genetic algorithm is
designed by considering the optimal solution constraints, which
is represented in this section. The representation of the optimal
solution constraints are illustrated as follows.

For any adjacent data A and B, the path is represented as
BA meaning the data allocation order from data B to A.
In any cases, \forall four adjacent data allocations C_i^a, C_i^b, C_j^a, and
C_j^b in D Table, \exists $C_i^a < C_i^b$, $C_j^a < C_j^b$, and a path
$a \rightarrow b$. For firming an optimal solution, it needs to ensure
that $C_i^a + C_j^b - C_j^a - C_i^b \leq 0$. The values of the data allocations
are:

\[
\begin{align*}
C_i^a &= R_i \times a^R + W_i \times a^W + MC_i \\
C_i^b &= R_j \times b^R + W_j \times b^W + MC_j \\
C_j^a &= R_j \times b^R + W_j \times b^W + MC_f \\
C_j^b &= R_k \times a^R + W_k \times a^W + MC_k \\
\end{align*}
\]

In the expression, R_i refers to the Read cost for memory i,
a^R refers to the Read access number for data i, W_i refers
to the Write cost for memory i, and a^W refers to the Write
access number for data i. The path from data A to B selecting $C_i^a \rightarrow C_j^a$ means data allocations are $A \rightarrow Memory i$ and $B \rightarrow Memory j$. We set the $\Delta R_{ij} = R_i - R_j$, $\Delta W_{ij} = W_i - W_j$, $\Delta W_{ki} = W_k - W_i$, and $M_{C_{total}} = M_{C_i} + M_{C_j} - M_{C_k} - M_{C_f}$. Therefore, the
optimal solutions constraints are shown in Eq. 5:

\[
\begin{align*}
\Delta R_{ij} + \Delta W_{ij} \cdot a^W + \Delta W_{ki} \cdot a^W \geq M_{C_{total}} \\
M_{C_{total}} = M_{C_i} + M_{C_j} - M_{C_k} - M_{C_f} \\
\end{align*}
\]

Applying Greedy algorithm can produce optimal solutions
when the condition meets the requirements given in Eq. 5.
Otherwise, using Greedy algorithm can generate suboptimal
solutions that need adjustments. The accomplishment of
the adjustment is processed by our proposed genetic algorithm.
The theorem stating the optimal solutions restraints is given in
Theorem 4.1, which focuses on the adjacent path comparisons
and decisions in D Table.

Theorem 4.1. \forall a set memories M, $\{M_i, M_j, M_f, M_k\} \subseteq M$, data $A=\langle a^R, a^W \rangle$, $B=\langle b^R, b^W \rangle$, $C_i^a < C_i^b$ and $C_j^a < C_j^b$

The costs of the memories consist of R_x and W_x, $x = \{i, j, f, k\}$. Denote $\Delta R_{ij} = R_i - R_j$, $\Delta W_{ij} = W_i - W_j$, $\Delta W_{ki} = W_k - W_i$, and $M_{C_{total}} = M_{C_i} + M_{C_j} - M_{C_k} - M_{C_f}$. If satisfying $\Delta R_{ij} \cdot a^R + \Delta W_{ij} \cdot b^W + \Delta W_{ki} \cdot a^W \geq M_{C_{total}}$ and priority selection principle, then $C_i^a + C_j^b \leq C_j^a + C_i^b$ and the data allocation $\langle A \rightarrow M_i, B \rightarrow M_j \rangle$ is an optimal solution for minimizing total costs under the four-memory configuration.

We use contradiction proof to prove the correctness of
Theorem 4.1. We use P to represent the satisfaction of Eq.
5, use G to denote the optimal solutions. The following proof
proves that G is true when P is true, $P \Rightarrow G$.

Proof. Assume that P is true and G is false, when there
exists memories M_i, M_j, M_f, M_k, data $A=\langle a^R, a^W \rangle$ and
$B=\langle b^R, b^W \rangle$. Since P is true, $P \Rightarrow C_i^a + C_j^b < C_j^a + C_i^b$; G is
false \Rightarrow there exists a solution $(C_x^a + C_y^b)$ offering a lower cost
than $(C_i^a + C_j^b)$. $\neg G \Rightarrow (C_i^a + C_j^b) > (C_x^a + C_y^b)$, where the
adjacent paths formed by $C_i^a < C_x^a < C_k^a$, $C_j^b < C_y^b$. $C_x^a < C_k^a < C_j^b < C_y^b$.

TABLE 6
Table mapping for the cost comparisons between data allocations

<table>
<thead>
<tr>
<th>A</th>
<th>C_i^a</th>
<th>C_i^b</th>
<th>C_j^a</th>
<th>C_j^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C_i^a</td>
<td>C_i^b</td>
<td>C_j^a</td>
<td>C_j^b</td>
</tr>
</tbody>
</table>

First, our approach uses Greedy algorithm to determine
the path $C_i^a \rightarrow C_j^b$. Since there are only two memories, the
other path is $C_j^b \rightarrow C_i^a$. Therefore, the crucial deterministic
comparison for the optimal solution requirement is shown in
Eq. 2, which shows a fundamental relation of obtaining an optimal
solution.

\[
C_j^b + C_i^a \geq C_j^a + C_i^b \Rightarrow C_j^a + C_i^b \geq C_i^a + C_j^b
\] (2)

In Eq. 2, C_j^b means the cost of using the i memory for data j.
We use M_{C_i} to present the sum of Move and Communication
costs. The mathematical expressions of C_j^b are given as follows:

\[
\begin{align*}
C_i^a &= R_i \times a^R + W_i \times b^R + MC_i \\
C_i^b &= R_j \times b^R + W_j \times a^R + MC_j \\
C_j^a &= R_j \times b^R + W_j \times a^R + MC_j \\
C_j^b &= R_k \times a^R + W_k \times a^R + MC_k \\
\end{align*}
\]

Align with Eq. 2, we gain the following Eq. 3, which
represents the constraints for obtaining optimal solutions

\[
\begin{align*}
(\Delta R_{ij} + \Delta W_{ij} \cdot a^W + \Delta W_{ki} \cdot a^W) \geq M_{C_{total}} \\
M_{C_{total}} = M_{C_i} + M_{C_j} - M_{C_k} - M_{C_f} \\
\end{align*}
\]

For satisfying the optimal solution requirements, we execute
Eq. 3 and consider three situations based on the comparisons
between variables a_1 and a_2 as well as variables b_1 and b_2. The
results are given in Eq. 4.

\[
\Delta R_{ij} + \Delta W_{ij} \Delta a_{12} + \Delta W_{ij} \Delta b_{12} \geq M_{C_{total}}
\] (4)

Consider the practical scenario, we define the process
of data allocation as a P, in which there is a sorted data set.
following the availability priority principle in D Table. Define the formulation calculating the total costs is $C(m,n)$, as shown in Eq. 2. In the formulation $C(m,n)$, m means the memory selection and n means the data.

Therefore, the following deduction is gained:

$$C(f, b), C(j, b), C(y, b)$$

$$C(i, a), C(x, a), C(k, a)$$

$$C_n^a \in [C_n^a, C_n^b]$$

$$C_n^a \in [C_n^b, \infty)$$

when $\neg G \Rightarrow \exists C(x, a) + C(y, b) < C(i, a) + C(j, b)$

$$< C(f, b) + C(k, a) \Rightarrow C_a^a - C_i^a < C_b^i - C_b^b$$

Followed by \mathbb{P}, $\exists C_x^a - C_i^a > C_b^i - C_b^b$

$$\Rightarrow C_i^b - C_b^y > C_a^a - C_i^a > C_b^i - C_b^f \Rightarrow C_b^y < C_b^f$$

which conflicts with $C_i^b < C_b^y$. Therefore, $\mathbb{P} \Rightarrow G$ is true. \qed

Therefore, our genetic algorithm emphasizes the constraints and configure the evolutive principle according to the findings above. The initial plan created by greedy algorithm will be assessed by the optimal solution constraints and determine whether the plan needs to be adjusted. The next section provides the detailed description about our crucial algorithms.

5 Algorithms

In this section, we provide descriptions of two crucial algorithms of CAHCM. Section 5.1 illustrates 2DA algorithm and Section 5.2 exhibits the B Table Generation Algorithm.

5.1 Dynamic Data Allocation Advance (2DA) Algorithm

Aim to generate an adaptable data allocation solution, we propose Dynamic Data Allocation Advance (2DA) algorithm. This algorithm is designed to solve COPHM problem in a polynomial time. The outputs of implementing 2DA algorithm is producing optimal solutions under constraints or suboptimal solutions within non-constraint conditions. Pseudo codes of 2DA algorithm are given in Algorithm 5.1.

As mentioned in Section 4.1, inputs mainly include information about the data and memories. The notations used in algorithms’ pseudo codes are given as follows. We use D_i denote the input data and i refers to the data index. The number of the input data is N_d. The data size for each data is $S_d(i)$. The required number of the Read and Write accesses for each input data is $R_d(i)$ and $W_d(i)$, which is aligned with D_i. The critical points for each memory is β. The cost of Read access is $C_i^a d(i)$ when $S_d(i) < \beta$. Otherwise, use $C_i^b d(i)$ when $S_d(i) \geq \beta$. Correspondingly, the cost of each Write is $C_i^a d(i)$ when $S_d(i) < \beta$ and the use $C_i^b d(i)$ when $S_d(i) \geq \beta$. The Move costs between memories are $M_{j\rightarrow k}$, which means the data move from Memory a to b. The number of cloud memory type offered by one cloud vendor is N_{mt}. Each type has k available memories and we use $M_{mt}(g)$ to denote each memory.

In addition, the output is Data Allocation Table (DataAllocation). Two crucial procedures are involved in this algorithm.

Algorithm 5.1 Dynamic Data Allocation Advance (2DA) Algorithm

Require: B Table, N_{mt}, k, $\{M_{mt}(g)\}$

Ensure: DataAllocation

1: Input B Table
2: Initialize all availabilities of the cloud memories, N_{mt}, k, $\{M_{mt}(g)\}$
3: \forall data, sort data by the values of $(R_d(i) + W_d(i))$ in a descending order
4: for \forall input data do
5: Sort memory allocation costs in an ascending order
6: /* According to B Table */
7: for \forall the cost for each data allocation manner do
8: if The memory ($M_{mt}(g)$) is available then
9: Allocate data to this memory
10: /* $D_i \rightarrow M_{mt}(g)$ */
11: The number of this type of memory -1
12: end if
13: end for
14: end for
15: for $i=1$ to Constant do
16: for $j=1$ to data.size do
17: if $(Cost_j(Plan_j) + Cost_{j-1}(Plan_{j-1})) > (Cost_{j-1}(Plan_j) + Cost_j(Plan_{j-1}))$ then
18: Plan_j \leftrightarrow Plan_{j-1}
19: /* Switch the memory selections */
20: end if
21: end for
22: end for
23: RETURN DataAllocation

First, we use Greedy algorithm to create a solution that can be either an optimal solution or a sub-optimal solution. Next, we use genetic algorithm to improve the solution, which applies the operating principle shown in Eq. (5) to evaluate the obtained results gained from the Greedy. The data allocation plan will be updated if lower costs are gained within the configured generation rounds. The main phases of Algorithm 5.1 are:

1) Input B Table generated by Algorithm 5.2. Initialize all availability information about the heterogeneous cloud memories. The example of B Table is Table 4.
2) Summing up $R_d(i) + W_d(i)$ for each memory and sort the values in a descending order.
3) Sort the memory options in an ascending order for each data according to the required costs, which are based on mappings of B Table. The sorting results example is illustrated by Table 5 in Section 3.
4) Allocate the data to the available memories that have the highest priority till the last data by which the initial DataAllocation strategy is made.
5) An adjustment is made by accomplishing a genetic algorithm, in which a series of comparisons are processed. The comparison is based on the optimal solution constraints defined by Eq. (5).
6) Update the plan if the better solution is found until the configured rounds end. This is the main procedure of applying our proposed genetic algorithm.
7) Return the completed DataAllocation strategy for data allocations.

In summary, 2DA algorithm is an approach using both Greedy and genetic algorithms, which can produce an efficient solution within a short period time. The next section describes the method of generating B Table generation, which is one of the inputs of 2DA algorithm.

5.2 B Table Generation Algorithm

As mentioned in Section 5.1, we need to map the costs for each data and the corresponding memories in a B Table, which is one of the main inputs of Algorithm 5.1. This algorithm considers the memory critical points, β, as well as the corresponding memory performances under different βs. The purpose of this algorithm is mapping the costs with the corresponding data allocations in a computing friendly manner. Algorithm 5.2 represents the B Table Generation Algorithm.

Algorithm 5.2 B Table Generation Algorithm

Require: D_t, N_t, $R_d(i)$, $W_d(i)$, M_ab, N_{mt}, $M_{mt}(g)$, k, M_j, $S_{d(i)}$, $C_r^\beta d(i)$, $C_r^\beta d(i)$, $C_w^\beta d(i)$, β

Ensure: B Table

1: Initialize all input data, D_t, N_t, $R_d(i)$, $W_d(i)$, M_ab, N_{mt}, $M_{mt}(g)$, k, M_j, $S_{d(i)}$, $C_r^\beta d(i)$, $C_r^\beta d(i)$, $C_w^\beta d(i)$, β
2: for ∀ memories $\{M_{mt}(g)\}$ do
3: Initialize $Cost_{temp} \leftarrow 0$
4: if $S_{d(i)} < \beta$ then
5: $Cost_{temp} \leftarrow Cost_{temp} + R_d(i) \times C_r^\beta d(i)$
6: $Cost_{temp} \leftarrow Cost_{temp} + W_d(i) \times C_w^\beta d(i)$
7: else
8: $Cost_{temp} \leftarrow Cost_{temp} + R_d(i) \times C_r^\beta d(i)$
9: $Cost_{temp} \leftarrow Cost_{temp} + W_d(i) \times C_r^\beta d(i)$
10: end if
11: $Cost_{temp} \leftarrow Cost_{temp} + M_ab$
12: $Cost_{temp} \leftarrow Cost_{temp} + communication costs$
13: Data allocation cost to $M_{mt}(g) \leftarrow Cost_{temp}$
14: end for
15: RETURN B Table

The main phases of Algorithm 5.2 include:

1) Input all required data, including D_t, N_t, $R_d(i)$, $W_d(i)$, M_ab, N_{mt}, $M_{mt}(g)$, k, M_j, $S_{d(i)}$, $C_r^\beta d(i)$, $C_w^\beta d(i)$, β. Initialize a temporary variable $Cost_{temp}$ and assign an empty value.
2) Use Eq. (2) to calculate the value of total cost for each possible data allocations considering the memory capacities. Assign the values of the calculation outcomes to the temporary variable $Cost_{temp}$.
3) Generate the Table B by assigning the values of the $Cost_{temp}$ to the corresponding spots in $M_{mt}(g)$.
4) Return B Table used as the inputs of Algorithm 5.1.

In summary, two algorithms illustrated in this section support two main procedures of the model. The following section demonstrates our experimental evaluations.

6 EXPERIMENT AND THE RESULTS

We examined our proposed approach through an experimental evaluation. Section 6.1 showed our experimental configurations, and Section 6.2 displayed partial our experimental results.

6.1 Experimental Configurations

We used experimental evaluations to assess the performance of the proposed scheme. For the purpose of simulating cloud systems, we used two servers to imitate the operations of distributed cloud servers. Two servers acted a remote server and an on-premise client end, respectively. The operating system configurations were Ubuntu 15.04 on bother servers. The input data were generated in a random setting in order to simulate the distributed data load offload in practical scenarios. Two crucial aspects were examined in our evaluations, including efficiency and cost-saving performances.

First, we estimated the efficiency by evaluating the execution time. Two main comparisons were done in this evaluation. One comparison was investigating the execution time differences between the proposed scheme and the brute force method when various amounts of the cloud memories are executed. The other comparison assessed the execution time trend of the proposed model in various memory deployments.

In addition, our experiment also tested the performance of saving costs by evaluating the optimal and suboptimal solutions proportions out of a great number of experiments. We configured the difference (ΔCost) between the optimal solution costs ($Cost_{opt}$) and the costs ($Cost_{CAHCM}$) required by our proposed approach, which is represented as $\Delta Cost = Cost_{CAHCM} - Cost_{opt}$. We defined the Accuracy Ratio (AR) as the ratio between the optimal solution cost and $\Delta Cost$, which used the following formula: $AR = \Delta Cost / Cost_{opt}$.

Moreover, we had two main experimental settings that were designed to assess the proposed approach’s performance in different perspectives. The statement of two settings:

- Setting 1: We used a group of settings to evaluate the performance of CAHCM with different input data sizes, which included: Setting 1-1, 20 KB; Setting 1-2, 10 MB; Setting 1-3, 250 MB; Setting 1-4, 500 MB.
- Setting 2: We simulated multiple memory deployments, from 5 to 20, to assess the performance of data allocations in heterogeneous cloud memories.

These two settings were designed to examine the performance in adaptability and execution time while the input data sizes were varied.
6.2 Experimental Results

This section represented a few experimental results based on our experimental configurations. The performance comparisons were given between the proposed CAHCM and other available algorithms. The execution time examinations mainly focused on various input data sizes while deploying different amounts of the cloud memories.

Fig. 3. Time consumptions between CAHCM and Brute Force using 4and 5 memories under setting 1-1.

Fig. 3 represents the time consumptions between our proposed scheme and brute force method using 4 and 5 cloud memories under setting 1-1. The data allocation tasks using 6 memories cannot be accomplished in an acceptable polynomial time. As depicted in Fig. 3, CAHCM could complete the task in a shorter period. For example, using CAHCM could allocate data within 5.1 ms using 5 cloud memories, which was much shorter than brute force that required 22903.3 ms. The execution time differences between the proposed approach and normal method were great.

Fig. 4. Execution efficiency performance comparisons using CAHCM using different amounts of cloud memories under setting 1-1.

Moreover, we further evaluated the execution time by comparing various number of cloud memories, from 5 to 20, under settings 1-1, 1-2, 1-3, and 1-4. Fig. 4 exhibits the execution efficiency performance comparisons using CAHCM under different amounts of the cloud memories. As shown in the figure, the execution time of applying CAHCM only had a slight growth from 5 to 20 cloud memories. It implies that our proposed scheme could solve N-memory deployments in a dramatical short period, which met the heterogeneous cloud memories’ needs. The average increase rate of the execution time was 7.8% when one cloud memory was added.

Fig. 5. Execution efficiency performance comparisons using CAHCM using different amounts of cloud memories under setting 1-2.

Fig. 5 represents the execution time evaluations under setting 1-2. The execution time had a positive relationship with the number of the memories. The average increase time was 218 ms. The average execution time increase rate of each cloud memory increment was 6.5% along with the number of the cloud memories grew.

Fig. 6. Execution efficiency performance comparisons using CAHCM using different amounts of cloud memories under setting 1-3.

Fig. 6 shows the execution efficiency performance evaluations under setting 1-3. The movement had a similar trend line to Fig. 5. In general, the average increased execution time was 550 ms. The average execution time increase rate of each cloud memory increment was 4.1%.
Furthermore, Fig. 7 displayed some experimental results for evaluating execution efficiency under setting 1-4. The average increase time was 246 ms. And the average increase rate was 0.7%. On the whole, the execution time was associated with the number of the cloud memories in our experimental evaluations. The input data sizes also had a positive relationship with the execution time. The average of the increase rate for inserting each cloud memory was 4.8%.

In addition, Fig. 9 represents a comparison rate between CAHCM and other two algorithms. We defined Comparison Rate = Algorithm/CAHCM. Therefore, a higher value of the rate meant a greater difference gap when the rate was greater than 1. And the algorithm could have a higher chances than CAHCM. When the rate was less than 1, it meant the assessed algorithm had lower chances than CAHCM. As shown in the figure, our proposed CAHCM approach had an obvious advantage in gaining acceptable solutions.

In summary, according to our experimental results, our proposed approach had a great advantage in execution efficiency. The ratio of the optimal solutions was in an acceptable range.

7 Conclusions

This paper proposed a novel approach solving the problem of data allocations in cloud-based heterogeneous memories, which could be applied in big data for smart cities. The proposed model CAHCM was designed to enable to mitigate the big data processing to remote facilities by using cloud-based memories. The main algorithm was 2DA algorithm that could output optimal solutions at a high rate. Our proposed approach has been assessed in the experimental evaluations, in which performs reached the desired level.

References
