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Mathematical Introduction





Linear relationship between two variables
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a is the intercept of the graph on the y-axis, and





b is the slope of the graph.


Non-linear relationship between two variables





�


�


�


�First and second derivatives 





Given a function y = f(X), the first derivative of this function is written �EMBED Equation ��� or f '(x).  This derivative is also a function of x, and describes how the y-value changes for small changes in the x-value.  For example, if the original function is y = a + bX, then it is clear that the y-value changes at the rate of b, for small (and in this case, large) changes in the x-value.  In this example, the rate of change of y is constant, i.e. is the same for all values of x.  However, this is not necessarily so.  Thus, if we consider the function 


f(x) = 0.3 + 0.2 x + 0.1 x2, at a given value x = x0, the rate of change is 0.2 + 0.2 x0.  Clearly, this rate of change increases as we increase x0.  This can be seen graphically by examining the graph of the curve f(x).





�





Thus, the rate of change of the y-value is pretty close to zero for x-values close to -1, as shown by the slope of the tangent to the curve at x = -1 (see line marked a).  On the other hand, the tangent to the curve marked b has a positive slope, and for x-values in that vicinity (near x=1), the y-value increases positively for small changes in x.  





The derivatives of polynomials are simple to compute:


�EMBED Equation ���


�





A more complicated example is the area under the normal curve, which we saw before:


�EMBED Equation ���, which as the integral sign indicates is simply equal to the summation of the values of �EMBED Equation ���, from - �SYMBOL 165 \f "Symbol"� upto the particular value that x is taking on.  The first derivative of this function, can be written N'(X) or �EMBED Equation ��� is simply given by the term, �EMBED Equation ���.





The use of derivatives in maximization:





Suppose we wish to maximize or minimize a function, f(x).  How do we choose the value of x which accomplishes our purpose?





Consider the following function: �EMBED Equation ���.


If �EMBED Equation ��� denote the variance of returns on asset x, the variance of returns on asset y, and the covariance between their returns respectively, and w is the percentage of portfolio funds allocated to asset x, then f(w) represents the variance of returns of the portfolio.  Minimization of f(w) is then equivalent to choosing the optimal proportion of funds in asset x in order to minimize portfolio variance.  The following graph shows f(w) as a function of w, when �EMBED Equation ���, 


i.e. f(w) = .05w2 + .1(1-w)2+2(0.02)w(1-w) = .11w2 - 0.16w +.1





�





From the graph, it is clear that the minimum value of the portfolio variance occurs when w is approximately 0.75.  However, we would like to know the precise value of w which minimzes f(w) without having to graph the function.





Suppose w* is the optimal value, which minimizes f(w).  Then it is clear that moving away from w* in any direction will increase f(w).  In other words, the derivative of f(w) to the left of w* is negative, while that to the right is positive.  Consequently, the derivative of f(w) evaluated a w* must be zero.  Hence we can find the optimal value w* by solving the equation f '(w*) = 0.  Since f(w) is a polynomial, it is easy to use the rules given above to set 





0 = f '(w*) = 0.22w - 0.16.  





Solving this equation, we find w* =  8/11 = 0.7273.





In this case, we know by inspection of the f(w) function that w* is optimal.  However, f'(w*) takes the value zero in two cases: one, as here, when the derivative starts out being negative, passes through w* and then becomes positive; the second case is when the derivative starts out positive, passes through w* and then becomes negative.  In this second case, w* would not be a minimum.  Rather, it would be a maximum.  





To analytically confirm that w* is a minimum in our case, we check �EMBED Equation ���, which is the second derivative.  We see that this is 0.22 in our case, which means that for all values of w, we have the first derivative increasing, which is what we want.





If for any function g(y), we have g '(y*) = 0 and g"(y*) < 0, then y* maximizes g(y) by the same logic that we have used here.�


Exercises





Linear and nonlinear functions:





1. Plot the following functions, indicating the y-intercept and at least two other points.


i) y = 6 + 2x


ii) y = 6 - 2x


iii) y = 2 + 2x3


iv) y = log x





2. What is the slope of the curve f(x) = 5x2 + 2x + 1 at the point x = 2?





3. You have learnt that, for incomes in the range $10,000 to $100,000, Yearly Expenditure (E) is related to Yearly Income (I) according to the formula:


E = 0.8 I + 0.15 I2, where income and expenditure are measured in '000s of dollars.  For example, if an individual earns $50,000 per annum, he is likely to spend 0.8(50) - .0015(50x50) = 36,250.  If he earns $80,000, he spends 0.8(80) - .0015(80x80) = $54,400.  


Suppose an individual is earning $60,000 currently.  You believe that he is likely to earn $5000 more next year.  What proportion of this additional $5000 is he likely to save?





�Statistical Introduction


Statistical analysis





Suppose we are looking into the future, and we want to consider the return on a stock, say, Trump Casinos, over the next year.  We don't know for sure what this return is, because there are a lot of factors that determine the precise return that may accrue to stockholders of Trump Casinos.  And these factors themselves are uncertain.  However, we may suppose that there exists some structure that determines the return on Trump Casinos -- not all returns are equally likely.  Some are more likely, and some are less likely.  Presumably someone who knew all the factors that influenced the realization of the return on Trump and the likelihood of the different kinds of realizations of those factors would be able to answer questions such as:





What are the chances that the return on Trump will be positive?  


What are the chances that the return will be greater than 20%?


How likely is it that the return on Trump will be less than -5%?





Using all this information, we would be able, in principle, to construct, what is known as a probability distribution.  An example of such a distribution is given below.  This is an example of what is called a normal distribution.  This distribution is described by two numbers, a mean, which is the most likely value and the midpoint of the distribution (10% for this example), and a standard deviation, which is a measure of how spread out the likely values are (5% for this distribution).





�





Since what we have here is a graph or a function of the return, we ought to be able to describe the function in terms of an algebraic expression.  And, in fact, the height of the function at any point, r, is given by �EMBED Equation ���, where �SYMBOL 109 \f "Symbol"� is the mean or midpoint of the distribution, and �SYMBOL 115 \f "Symbol"� is the standard deviation referred to, above.  





This probability distribution/graph tells us what the likelihood is, of the return being in a small neighborhood of a given level.  For example, the approximate probability that the return will be in a 1% range around the mean of the distribution, 10%, equals the height of the graph at 10%, which is 8 times 1% or 0.01, or 8 x 0.01 = .08 or 8%.  This is an example of a continuous distribution.  Such a distribution allows the variable to take an infinite number of values; this means that the probability of the return being exactly equal to 10% is 8 times 0.0 or 0%!  It only makes sense to ask what the probability is, for a finite range.





In contrast to such a distribution, we also have discrete distributions.  For example, if we are interested in knowing the number of bankruptcies in a given month in the city of New York in the banking industry, we might obtain a distribution that looks like this:





�





This graph tells us the probability of obtaining exactly 0 failures, or 1 failure, or 2 failures.  This particular case is an example of a Poisson distribution, which is described by the expression Probability{Number of failures = y} = �EMBED Equation ���, where �SYMBOL 108 \f "Symbol"� is mean number of bank failures per month, and y! is a short-hand way of representing the product of all the integers until y.  Thus, 3! = 1x2x3 = 6, and 7! = 1x2x3x4x5x6x7 = 720.


�


Cumulative distributions and their use in Portfolio Management





The probability distributions described above tells us the likelihood of the variable taking a single value (for a discrete distribution) or a small range of values (for a continuous distribution).  If we now take this probability distribution and cumulate them, we obtain what is known as a cumulative distribution.  Such a cumulative distribution would answer a question such as: What is the probability of getting a return less than or equal to 8%?, or


What is the likelihood of having 2 or fewer bankruptcies?  These answers would be obtained simply by adding up or cumulating the probabilities for all values less than 8% in the first case, and 2 in the second case.
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�The Cumulative Normal:





The cumulative of the Normal Distribution that we displayed above is graphed below:





�





The Cumulative Unit Normal distribution used in option pricing:





The Unit Normal distribution is a normal distribution with mean zero and standard deviation, one.  The cumulative unit normal is simply the cumulative distribution for this particular normal distribution.  Values of the cumulative unit normal are tabulated in most investments books, and in statistics books.  Here is an example of a use of the cumulative unit normal.





The Black-Scholes call option pricing formula states:





�EMBED Equation ���, where


C = call option price


S = price of the underlying stock


E = exercise price of the option


t = number of periods remaining before the option expires


�SYMBOL 115 \f "Symbol"� = standard deviation of returns on the underlying stock, and


r = interest rate per period


N(.) represents the cumulative unit normal distribution, and


x = �EMBED Equation ���


�





Table of (approximate) cumulative unit normal values:





x�
N(x)�
�
x�
N(x)�
�
x�
N(x)�
�
0.1�
0.5398�
�
1.1�
0.8641�
�
2.1�
0.9821�
�
0.2�
0.5792�
�
1.2�
0.8847�
�
2.2�
0.9860�
�
0.3�
0.6178�
�
1.3�
0.9030�
�
2.3�
0.9892�
�
0.4�
0.6553�
�
1.4�
0.9191�
�
2.4�
0.9918�
�
0.5�
0.6913�
�
1.5�
0.9330�
�
2.5�
0.9938�
�
0.6�
0.7256�
�
1.6�
0.9451�
�
2.6�
0.9953�
�
0.7�
0.7579�
�
1.7�
0.9553�
�
2.7�
0.9965�
�
0.8�
0.7880�
�
1.8�
0.9640�
�
2.8�
0.9974�
�
0.9�
0.8157�
�
1.9�
0.9712�
�
2.9�
0.9981�
�
1�
0.8411�
�
2�
0.9772�
�
3�
0.9986�
�






Example:





Compute the value of an American call option on Exxon, with an exercise price of $45, and a time to maturity of 3 months.  Exxon is currently selling at $50, and the interest rate is 10% p.a.  The standard deviation of returns on Exxon is 15% p.a.





x = �EMBED Equation ���


N(1.6448) is approximately halfway between 0.9451 and 0.9553 or 0.9502.  


N(1.6448 - 0.0866) = N(1.5582) = approximately (0.9330+0.9451)/2 = 0.93905.  


Hence, C = 50(.9502) - 45 (0.9672)(.93905) = $6.64.�


Exercises





Statistical analysis:





1. Write down the probability distribution of the random variable, x, where x is the number resulting from the throw of a die; graph it.





2.  Consider the following game.  To begin with, you are given $200.  Two coins are then tossed in succession.  If both are tails or both are heads, you are given an additional $200.  If the first one is tails and the second one is heads, you must pay $300.  If the first one is heads and the second tails, you get nothing, and you pay nothing.  What is the probability distribution of the random variable, x, if x is the total of your winnings at the end of the game?





3.  Suppose the random variable, y, has the following probability density:


f(y) = 0.375 y2, y �SYMBOL 206 \f "Symbol"� (0,2).  Plot f(y).  Estimate the probability that y takes a value between 0.95 and 1.05.





4. Compute the value of an American call option on Telefonos Mexicos, with an exercise price of $10, and a time to maturity of 6 months.  Telefonos Mexicos is currently selling at $6, and the interest rate is 10% p.a.  The standard deviation of the return on Telefonos Mexicos is 30% p.a.








�Sampling:





Let us go back to return probability distributions:





Suppose the return on Trump stock, r is distributed as a normal distribution with mean �SYMBOL 109 \f "Symbol"� and standard deviation, �SYMBOL 115 \f "Symbol"�.  As we said before, this implies several things about the distribution.  First of all, the expected rate of return on Trump stock is �SYMBOL 109 \f "Symbol"�%.  The expected rate of return is defined as the weighted average of the different rates of return that one might get on Trump stock, where the weights are equal to the probabilities.  For example, if the return, r, on Trump stock is distributed normally with a mean of 10% and a standard deviation of 5%, then the expected return is defined as:





�EMBED Equation ��� 


if we let f(r) denote the normal probability distribution.





The mean of the distribution, then, can be considered to be the return one would get on average if one invested in Trump stock time and again, under the same circumstances.





The standard deviation, as mentioned above, describes the spread of the distribution.  Its square, the variance, is defined as:





�EMBED Equation ��� 





In other words, the variance is the average squared deviation of the return on Trump stock from its long-term mean.  If there is a good chance that the return on Trump stock may be  very different from the average return, then those values of the return, r, will contribute a lot to the computation of the expected value of (r-�SYMBOL 109 \f "Symbol"�)2, and the computed value of the variance will be high.  If we use E(x) to denote the weighted average value of a random variable, x, where the weights are given by the probabilities, the last expression E(r-�SYMBOL 109 \f "Symbol"�)2 provides a succinct way of describing the variance as the average squared deviation from the mean value.





�


What this means is the following: if we know the mean of a return distribution is high, the average return can be expected to be high.  Similarly, if we know the variance (or standard deviation) is high, we know that returns deviating a lot from the mean are more likely than otherwise.





But, what if we do not know the actual return distribution?  Can we infer the return distribution by observing the actual realized returns?  Obviously, this is an important question because in the real world, we cannot actually observe the true probability distribution.  The answer is that we can estimate the true distribution by treating the realized returns as a sample from the true distribution.  This 'true' or 'actual' distribution that we have just referred to (that presumably truly generates the returns) is called the population distribution; the distribution that can be inferred from the actual return data is called the sample distribution.








Suppose we observe the following returns on Trump stock during 10 consecutive months:





1/94�
0.06�
�
6/94�
0.07�
�
2/94�
0.02�
�
7/94�
0.08�
�
3/94�
0.04�
�
8/94�
0.03�
�
4/94�
-0.01�
�
9/94�
0.04�
�
5/94�
0.12�
�
10/94�
0.05�
�



We can estimate the population mean by the sample mean, which is computed as:


�EMBED Equation ���, which for our sample yields (0.06 + 0.02 + 0.04 - 0.01 + 0.12 + 0.07 + 0.08 + 0.03 + 0.04 + 0.05)/10 = 0.05, or 5%.





�The sample variance is computed as �EMBED Equation ���.  In our sample, we get:





ri�
ri-�EMBED Equation ����
(ri-�EMBED Equation ���)2�
�
0.06�
0.01�
0.0001�
�
0.02�
-0.03�
0.0009�
�
0.04�
-0.01�
0.0001�
�
-0.01�
-0.06�
0.0036�
�
0.12�
0.07�
0.0049�
�
0.07�
0.02�
0.0004�
�
0.08�
0.03�
0.0009�
�
0.03�
-0.02�
0.0004�
�
0.04�
-0.01�
0.0001�
�
0.05�
0�
0�
�
�
Variance�
0.001267�
�



The sample standard deviation becomes �SYMBOL 214 \f "Symbol"�0.001267 or 3.56%





Hence with the given data, we would infer that the return on Trump stock has a probability distribution with mean 5% and standard deviation 3.56%.  If we can assume that the stock has a normal distribution, we infer that the probability distribution of the return looks as in the following graph:





�


�Correlation Analysis:





The probability distributions that we have discussed up to this point mainly refers to a single variable.  However, if we wanted to evaluate relationships between two random variables, such as that between the return on Trump stock and the return on the S&P 500 Index, we would have to analyse probability distributions of two variables.





In this case, we would be need measures of association.  The first measure of association that we will discuss is covariance.  This also happens to be a concept that is crucial in portfolio theory.





Whereas the mean and the standard deviation give us information about the probability of a random variable taking on different values, the covariance tells us about the propensity for two random variables to take on combinations of values.  For example, if Trump and Marriott are both companies that are in the hotel business, we would expect that the likelihood that both stocks do simultaneously well or simultaneously badly be high.  On the other hand, we would not expect such a scenario with, say, Exxon and Trump.  Whether Exxon did well or not, we would not expect Trump to do any differently than if Exxon did not do well.  This tendency of two random variables to move or not to move together is measured by covariance.





The covariance is defined as follows:





�SYMBOL 115 \f "Symbol"�xy = E[(x-�SYMBOL 109 \f "Symbol"�x)(y-�SYMBOL 109 \f "Symbol"�y)]





Recall that E(x) represents the weighted average value of a random variable, x, where the weights are given by the probabilities.  Since a transformation of a random variable is also a random variable, (x-�SYMBOL 109 \f "Symbol"�x)(y-�SYMBOL 109 \f "Symbol"�y) is also a random variable, which takes different values when x and y take different values.  For example, replace x with the return on Trump stock, and y with the return on Marriott stock, and let us assume that the respective mean returns on the two stocks are 5% and 10%.  Then, if the return on Trump stock, denoted rTr, is 3% and the return on Marriott stock, denoted rMa, is 5%, �EMBED Equation ��� takes the value (0.03-0.05)x(0.05-0.10) or 0.001.  The covariance between the return on Trump stock and Marriott stock can then be thought of as the average product of the deviations of the two stocks from their respective means.  





We can think of four classes of outcomes: a) the return on both Marriott and Trump stocks are above their respective means-- rM > 10% and rT > 5%; b) the return on both stocks are below their respective means--rM < 10% and rT < 5%; c) the return on Trump is above its mean and the return on Marriott is below its mean--rM < 10% and rT > 5%; and finally, d) the return on Trump is below its mean and the return on Marriott is above its mean.


�
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For Marriott and Trump, we would consider scenarios a) and b) likely, but not c) or d).


Now, in quadrants a) and b), the deviations of Trump and Marriott returns from their means is of the same sign, and hence the products are positive.  In quadrants c) and d), the products of the deviations are negative.  Hence if quadrants a) and b) are more likely than quadrants c) and d), the average product of deviations is likely to be positive, rather than negative.





For Trump and Exxon, on the other hand, we might consider all four scenarios equally likely.  This means that the positive products of deviations are likely to cancel out against the negative products of deviations, and the average weighted product of deviations will be close to zero.  





�EMBED MSDraw   \* mergeformat���





�


We can apply this concept to a sample of return observations, as well.  Suppose the return on Trump and Marriott stocks are 





Year�
rTr�
rMa�
�
Year�
rTr�
rMa�
�
81�
0.06�
0.17�
�
86�
0.07�
0.14�
�
82�
0.02�
0.035�
�
87�
0.08�
0.18�
�
83�
0.04�
0.01�
�
88�
0.03�
0.06�
�
84�
-0.01�
0.045�
�
89�
0.04�
0.08�
�
85�
0.12�
0.19�
�
90�
0.05�
0.09�
�



The mean returns can be computed to be 5% and 10% p.a. respectively.





We can compute a sample covariance with the following formula:


�EMBED Equation ���, where the average is computed over the ten months for which we have data.





rTr�
�EMBED Equation ����
rMa�
�EMBED Equation ����
Product of deviations�
�
0.06�
0.01�
0.17�
0.07�
0.0007�
�
0.02�
-0.03�
0.035�
-0.065�
0.00195�
�
0.04�
-0.01�
0.01�
-0.09�
0.0009�
�
-0.01�
-0.06�
0.045�
-0.055�
0.0033�
�
0.12�
0.07�
0.19�
0.09�
0.0063�
�
0.07�
0.02�
0.14�
0.04�
0.0008�
�
0.08�
0.03�
0.18�
0.08�
0.0024�
�
0.03�
-0.02�
0.06�
-0.04�
0.0008�
�
0.04�
-0.01�
0.08�
-0.02�
0.0002�
�
0.05�
0�
0.09�
-0.01�
0�
�
�
�
�
Covariance�
0.0019278�
�



�


Unfortunately, it is difficult to evaluate the degree of co-dependence of two variables by looking at this measure because its value depends on the units of the standard deviations of the two variables.  We can, however, define another measure, a normalized covariance, called the correlation coefficient, which is computed as:


�EMBED Equation ���, or the ratio of the covariance to the product of the standard deviations.  In the case of our sample, this works out to 0.828.  The correlation coefficient takes values between -1 and +1.  Hence, this indicates a relatively large propensity for the two variables to move together, or covary.








Below, we see the return on Trump stock plotted against the return on Marriott stock.  Consistent with our expectations, all observations fall within quadrants a and b.








�





It is clear from what we have seen that knowledge of the actual return on Marriott stock could improve our prediction of the return on Trump stock as well.  For example, if we know that the return on Marriott is less than 10%, then we can guess that the return on Trump stock is likely to be less than 5% as well.  Such predictions can be made more precise by regression analysis.


�Regression Analysis:





In regression analysis, we start with the set of points that we have in the graph above.  We then posit a linear relation between the variable on the y-axis (rTr) and the variable on the x-axis (rMa).  





�EMBED Equation ���





However, it is obvious that this relationship is not exact.  Hence, we add an additional term, called the residual that takes account of this departure from linearity.  Symbolically, we  write:





�EMBED Equation ���





We then choose values for the constants a and b, such that the residual or error term, �SYMBOL 101 \f "Symbol"�t, is minimized.  There are many values for a and b, that would all equate the sum of the residual terms, �EMBED Equation ��� to zero.  To find a unique set of values a and b, we impose, in addition, the restriction that the sum of the squared residuals, �EMBED Equation ���, be minimized: .  This defines a unique value for b, which is related to the covariance:


�EMBED Equation ���.


We put a hat over the b, to indicate that this is an estimate of the true value of b in the linear relationship between rTr and rMa in the population.


The estimate of a, then, is simply �EMBED Equation ���.  Then, for any given value of rMa, the predicted value of rTr is simply �EMBED Equation ���.  For our sample, this estimated relationship is shown in the output from a spreadsheet regression command:





Constant		0.0044271			X Coefficient(s)	0.4557292


R Squared		0.6995842			Std Err of Coef.	0.1055852








The return on Trump stock, rTr, is called the dependent variable, since we are predicting it, while rMa, the return on Marriott stock, is called the independent variable.  The Y-variable refers to the dependent variable, and the X-variable refers to the independent variable.


�


From this output, we see that the estimated regression equation is:





rTr = 0.004427 + 0.45573 rMa.





The standard error of the estimated coefficient, which is 0.1055852 indicates the degree of our confidence in the coefficient estimate.  Just as the given sample is just one of the many samples that could have been generated by our posited underlying relationship describing rTr and rMa, i.e. �EMBED Equation ���, we can also think of this regression as one of the many corresponding regressions.  With this approach, the estimated coefficient for rMa is the estimated mean of the probability distribution of coefficients that such repeated regressions would generate.  The standard error, 0.1056, is then like the estimated standard deviation of this probability distribution of coefficients.





The graph below shows the actual relationship in the sample between rTr and rMa, and the estimated relationship:





�





As we saw earlier in our discussion of linear functions, the estimated intercept â is the predicted value of rTr if rMa were zero.  The estimated coefficient of rMa in the regression equation, �EMBED Equation ���, is simply the slope of the estimated linear relationship.





For each pair of values, rMa and rTr, in the sample, we can compute the residual, which is equal to �EMBED Equation ���.  In the graph, this is simply the vertical distance between each actual value and its predicted value.


Multiple Regression:





We can extend this analysis in a straightforward way to relating a given quantity to two or more quantities.  Thus, if we posit that the dividend payout ratio on a stock depends linearly on its P/E ratio and the firm's size, we could write:





DPi = a0 + a1 PEi + a2 SIZEi + �SYMBOL 101 \f "Symbol"�i,





where DPi, PEi, and SIZEi are the dividend payout ratio, the P/E ratio and the size of the i-th firm.





The values of a0, a1, and a2 can be estimated if we have values for DP, PE and SIZE for a sample of firms.  In this case, we have, what is known as a cross-sectional regression, since the sample consists of N different firms.  This is in contrast to a time-series regression, such as our previous regression where the members of the sample related to different points in time.  Again, we would be able to plot  DP, PE, and SIZE triples in 3-dimensional space; and, once again, the values of �EMBED Equation ��� are computed by attempting to minimize the sum of the squared errors.  The formulae, in this case, are somewhat more complicated: the coefficient �EMBED Equation ���, for example, would depend not only on the relationship between DP and PE, but would also involve SIZE.





Consider an extension of the bivariate regression that we estimated above.  The new variable rI represents the return on a hotel industry index.  Suppose we wish to find out if there is any relationship between the return on Trump stock and the return on Marriott stock, over and beyond their common relationship with happennings in the hotel industry.  One way to do this is to regress rT on rM, as well as on the index.





Year�
rTr�
rMa�
rI�
�
Year�
rTr�
rMa�
rI�
�
81�
0.06�
0.07�
0.035�
�
86�
0.07�
0.04�
0.04�
�
82�
0.02�
-0.06�
0.015�
�
87�
0.08�
0.08�
0.045�
�
83�
0.04�
-0.09�
-0.05�
�
88�
0.03�
-0.04�
0.055�
�
84�
-0.01�
-0.06�
0.025�
�
89�
0.04�
-0.02�
0.07�
�
85�
0.12�
0.09�
0.035�
�
90�
0.05�
-0.01�
0.1�
�



The results of this regression are:





rTr = 0.009 + 0.153 rMa + 0.683 rI, 


                    (0.070)       (0.118)





with the standard errors of the estimated coefficients in parenthesis.  These results indicate that once we take into account the relationship between the return on Trump stock and the return on the hotel industry index, there does not remain much of a relationship between the return on Trump and the return on Marriott stock.


�Exercises


Sampling:





1. Estimate the mean and standard deviation of the population from which the following sample of returns on stock A has been taken:





�
RA�
�
�
8�
�
�
5�
�
�
4�
�
�
3�
�
�
10�
�



2. What is your estimate of the covariance between the returns on stocks A and B, given the following sample of returns?





�
Month�
RA�
RB�
�
�
1�
8�
3�
�
�
2�
5�
5�
�
�
3�
4�
2�
�
�
4�
3�
6�
�
�
5�
10�
4�
�



What is the correlation?





3. Estimate the regression of RA on RB.  What is the predicted value of RA if RB is known to be 2?





4. Estimate the regression of RB on RA.   What is the predicted value of RB if RA is known to be 4?





5. Given below are the results of a regression of RA on RB and RC.  Analyse the results.  How are your conclusions changed from the results of question 3?





Constant			10.985782


Std Err of Y Est		1.9374092


R Squared			0.7792027


			


X Coefficients			-0.1800948	-1.066351


Std Err of Coef.		0.62559242	0.4217743





�Portfolio Analysis





Expected Return and Risk of an Investment:


The expected return on an investment is described by the expected value of the return and the risk is usually described by the variance of the return.  Since the variance gives us an idea of the spread of the distribution, we can learn something about the extent of uncertainty that exists regarding the return on the investment by looking at the variance.  If we can think of the mean return as a "neutral" outcome, returns less than the mean would be "bad" outcomes and returns more than the mean would be "good" outcomes.  If the return distribution is symmetric, this also means that good outcomes are as likely as bad outcomes.  Since the variance measures the spread of the distribution around the mean, in this case, it would also give us a measure of how "bad" a bad outcome is likely to be, on average.  However, if the distribution is not symmetric, then this is not true, and we need other measures such as skewness (the extent to which the distribution is skewed or tilted in one direction, instead of being symmetric) to give us this information.  In the case of a normal distribution, we do not have this problem.  Hence the variance would be a good measure of risk of the investment, provided the return on the investment has a symmetric distribution.


We must keep in mind, however, that variance of return on an investment is a good measure of the risk of the investment only if we are considering this investment by itself; in other words, it measures the total risk of the investment: this investment is not meant to be an addition to an already existing portfolio.  In that case, we would have to do incremental analysis and look at the incremental risk of the investment, not the total risk.  The variance could be used as a measure of risk if we are evaluating the entire portfolio of investments that an investor has, for in that case, we would of course want the total risk.





�Investment Portfolios:


A set of assets is called a portfolio.  Formally, we define a portfolio by the proportion of wealth of the portfolio that is invested in each asset in the portfolio.  Denote by wi, the proportion of the total wealth of the portfolio invested in asset i.  Hence, if a particular portfolio consists of $500 invested in asset 4 and $500 invested in asset 2, the portfolio will be defined by the set of N numbers (w1, w2, w3, w4,...., wn) = (0, 0.5, 0, 0.5, 0, 0,.....,0), where N is the total number of assets available for investment.  Note that by assigning a weight of 0 to assets not included in the portfolio at all, we avoid the need to list the assets included in the portfolio with nonzero weights, in addition to the list of portfolio weights.  Of course, this is useful only for conceptual purposes.  Practically, if one wanted to specify a portfolio, one would find it easier to list the different assets in the portfolio and the dollar amounts invested in each one of them.





The return on a portfolio is related to the returns on the individual assets by the formula:


		�EMBED Equation ���


where rp is the return on the portfolio and the summation is over the N different assets.  For example, if the portfolio consisted of wealth invested half in asset 1, which obtained a return of 10% and half in asset 2, which obtained a return of 20%, the return on the portfolio would be 0.5(10%) + 0.5(20%) = 15%.  Correspondingly, we can also write:


		�EMBED Equation ���                                               (1)


The expression for the variance is a bit more complicated.  For a two asset portfolio, it is given by:





		�EMBED Equation ���





In general, we can write 





		�EMBED Equation ���                  (2)


where the second summation is taken over all (i,j) combinations.  In any case, because of the role played by the correlation, we see that the standard deviation of returns on the portfolio is not normally a linear combination of the standard deviations of returns on the individual assets.  The exception is when the correlation is perfect.  Consider the case of a two-asset portfolio.  If we set �SYMBOL 114 \f "Symbol"� to 1 and take the square root of both sides, then the expression boils down to 





		�SYMBOL 115 \f "Symbol"�p = w1�SYMBOL 115 \f "Symbol"�1 + w2�SYMBOL 115 \f "Symbol"�2.


�All of the above formula hold, even when the wi are negative; in this instance, we just interpret wi to represent a short position--this would be akin to borrowing instead of investing/lending.  Taking both expressions (1) and (2), we can construct the (�SYMBOL 109 \f "Symbol"�,�SYMBOL 115 \f "Symbol"�) combinations that can be created given two assets with specific means and standard deviations, by varying the portfolio proportions.  If we represent each (�SYMBOL 109 \f "Symbol"�,�SYMBOL 115 \f "Symbol"�) combination by a point in (�SYMBOL 109 \f "Symbol"�,�SYMBOL 115 \f "Symbol"�) space, we can demonstrate graphically that the set of (�SYMBOL 109 \f "Symbol"�,�SYMBOL 115 \f "Symbol"�) combinations attainable by combining two assets is, in general, a line curved away from the origin.  These are called combination lines.


�EMBED MSDraw   \* mergeformat���
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�EMBED MSDraw   \* mergeformat���


If we allow the number of assets in the portfolio to be greater than two, instead of a line, we get a set, which is for the most part, convex.  The interesting part of this set, however, is the northwest frontier; this is called the efficient frontier.  Portfolios on this frontier are called efficient portfolios and have the lowest risk (defined by variance) for a given level of expected return.  Efficient portfolios have the property that all combinations of such portfolios are themselves efficient.  This has important implications, which are developed in the Capital Asset Pricing Model.  





�EMBED MSDraw   \* mergeformat���


�


The CAPM and the Security Market Line:


The CAPM makes certain assumptions that are standard to a lot of economic models: it assumes 


�SYMBOL 168 \f "Symbol" \s 10 \h�	perfect markets, i.e zero transactions costs, 


�SYMBOL 168 \f "Symbol" \s 10 \h�	free information flows and price-taking investors; 


�SYMBOL 168 \f "Symbol" \s 10 \h�	no taxes.  


�SYMBOL 168 \f "Symbol" \s 10 \h�	investors prefer greater expected returns to less and less standard deviation of return to more; all other portfolio return characteristics are irrelevant.  





Given this, all investors, independent of their particular risk-return tradeoffs will, in equilibrium, hold portfolios on the efficient frontier.  Hence all combinations of portfolios held by investors are efficient and lie on the efficient frontier.  One such portfolio is that combination of portfolios held by all investors, where the portfolio weights are the fractions of total wealth held by each investor.  But this is precisely the entire portfolio of assets in the economy, or what we call the market portfolio.  Hence the CAPM implies that the market portfolio is efficient.  


An important property of efficient portfolios is that the expected returns on all portfolios are related linearly to the expected return on an efficient portfolio.  Since under the CAPM, the market portfolio is efficient, we will state this property for the specific case of the market portfolio.  Using the subscript m for the market portfolio,


		�EMBED Equation ���


where �SYMBOL 109 \f "Symbol"�0 is the expected return on a portfolio whose covariance with the market is zero, i.e. �SYMBOL 115 \f "Symbol"�0,m = 0.  Since we define �SYMBOL 98 \f "Symbol"�j = �SYMBOL 115 \f "Symbol"�j,m/�SYMBOL 115 \f "Symbol"�m2, such a portfolio is called a zero-beta portfolio, because if �SYMBOL 115 \f "Symbol"�0,m = 0, then �SYMBOL 98 \f "Symbol"�0 = 0.  Furthermore, if there is a risk-free asset, i.e. one whose returns are known with certainty, then the beta of that asset is zero.  Hence, �SYMBOL 109 \f "Symbol"�0 = rf, the risk-free rate.  We can then write:


		�EMBED Equation ���


This is called the Security Market Line (SML), because it gives us the equilibrium expected return on all securities.  We will see that �SYMBOL 98 \f "Symbol"�j can be interpreted as the risk of asset j in an efficient portfolio.  Hence, if we treat �SYMBOL 98 \f "Symbol"�j and �SYMBOL 109 \f "Symbol"�j as the X and Y variables, we can interpret the SML as the equilibrium risk-return relationship for individual securities.  If at any time, there is any deviation from this relationship, then there will be opportunities for arbitrage.  If there are two securities 1 and 2 with the same �SYMBOL 98 \f "Symbol"�, but with different expected returns �SYMBOL 109 \f "Symbol"�1 < �SYMBOL 109 \f "Symbol"�2, then asset 1 will be overpriced relative to asset 2 and it will be profitable to sell asset 1 and buy asset 2.  This will continue until �SYMBOL 109 \f "Symbol"�1 is equated to �SYMBOL 109 \f "Symbol"�2.


�Beta and Risk:


We can rewrite the expression for portfolio variance (2) as �SYMBOL 115 \f "Symbol"�p2 = �SYMBOL 83 \f "Symbol"� wi�SYMBOL 115 \f "Symbol"�ip.  In other words, the variance of the returns on a portfolio can be written as the weighted average of the �SYMBOL 115 \f "Symbol"�ip for each asset i.  It is, therefore, legitimate to treat �SYMBOL 115 \f "Symbol"�ip as the contribution of asset i to the (risk) variance of the entire portfolio.  Since the average investor in our simple model will hold the market portfolio, �SYMBOL 115 \f "Symbol"�im is the contribution of asset i to the risk of the investor's portfolio.  If we normalize the �SYMBOL 115 \f "Symbol"�im by �EMBED Equation ���, we find that  �SYMBOL 115 \f "Symbol"�im/�EMBED Equation ��� = �SYMBOL 98 \f "Symbol"�i measures the incremental or marginal contribution of asset i to the risk of the entire portfolio.  If we are evaluating a single asset, it is precisely this notion of risk that is relevant.  (The variance of returns on the asset would be relevant only if we were holding all our wealth in that one asset.)  This shows that for individual assets, �SYMBOL 98 \f "Symbol"� is the appropriate measure of risk.  


This can be further explained by the decomposition of ri into market-wide effects and company-specific effects that are unrelated to the market.  


           ri = ai + �SYMBOL 98 \f "Symbol"�i rm  +    �SYMBOL 101 \f "Symbol"�i


               market wide   company specific  


                 shocks         shocks





Correspondingly, �SYMBOL 115 \f "Symbol"�i2 can be divided into diversifiable and nondiversifiable risk:





           �SYMBOL 115 \f "Symbol"�i2 = �SYMBOL 98 \f "Symbol"�i2�SYMBOL 115 \f "Symbol"�m2 + diversifiable risk.





The company-specific shocks, being unrelated to the market (and to each other), can be diversified away in a large portfolio (akin to individual policyholder risks in an insurance company's portfolio of policies) and so need not be borne at all.  The non-diversifiable or beta risk (or market risk), on the other hand, cannot be diversified away and hence, investors must be compensated for bearing such risk.  This is why only beta risk enters the equilibrium risk-return relationship.


�Beta Estimation and Security Valuation


From the decomposition of ri into market and security-specific risk, we can see that the beta of an asset i can be thought of as the sensitivity of the return on asset i to changes in the return on the market.  We can, therefore, estimate an asset's �SYMBOL 98 \f "Symbol"� as the slope coefficient in a regression of the asset return ri on the market return rm.





However, there is an alternate method of computing a beta, which simultaneously permits us to estimate the extent to which the security is overpriced or underpriced.  Recall that according to the CAPM, �EMBED Equation ���, or:


�EMBED Equation ���.  This suggests that if a security is properly priced, the relationship between the excess return on the security (excess of the security return over the risk-free rate) and the excess return on the market is given by a straight line with slope equal to the security's beta and an intercept of zero.  Hence, if we regress the security's excess return on the market's excess return, we should simultaneously be able to estimate the security beta as well as the excess return on the security.





We can now perform this analysis for Trump stock, with the data given below:





�
rT�
rMkt�
rf�
�
�
rT�
rMkt�
rf�
�
1/94�
0.06�
-0.0056�
0.01�
�
6/94�
0.07�
0.0733�
0.008�
�
2/94�
0.02�
0.0299�
0.01�
�
7/94�
0.08�
0.0758�
0.012�
�
3/94�
0.04�
0.0591�
0.005�
�
8/94�
0.03�
0.1037�
0.012�
�
4/94�
-0.01�
0.0601�
0.005�
�
9/94�
0.04�
0.1122�
0.005�
�
5/94�
0.12�
0.0771�
0.005�
�
10/94�
0.05�
0.1289�
0.005�
�



rTr- rf = -0.0116 + 0.8456 (rMkt - rf )


            (0.0081)  (0.1089)      





This indicates that the beta of Trump stock is estimated to be 0.8456.  The standard error of 0.1089 indicates relatively high confidence in this value.  In fact, if we assume a normal distribution for the returns on Trump stock and on the market index, we can, with 95% confidence, say that the Trump beta lies within a band of 0.8456 �SYMBOL 177 \f "Symbol"� 2(0.1089), or between 0.6278 and 1.0634.





Furthermore, the estimated value of the intercept, which is also called the stock's alpha, is -0.0116, which is only 1.43 times its standard error, and hence, not reliably different from zero, as indicated by its standard error.  Consequently, we also conclude that the stock is properly priced.  





If the alpha estimate were reliably positive, we would conclude that the stock is underpriced; on the other hand, if it were reliably negative, we would say that it is overpriced.


�


�


Summary of Portfolio Theory





�SYMBOL 168 \f "Symbol" \s 10 \h�	Portfolio risk is measured as the variance of returns.


�SYMBOL 168 \f "Symbol" \s 10 \h�	The risk of an asset in a given portfolio is measured as the marginal contribution of an asset to that portfolio's risk.  This risk is given by the covariance of an asset's return with the return on that portfolio.


�SYMBOL 168 \f "Symbol" \s 10 \h�	If we accept the standard CAPM's assumptions, all investors hold a combination of the riskfree asset and the market portfolio of all risky assets; hence the appropriate measure of the risk of an asset that the market will be willing to compensate, is simply the covariance of that asset's returns with the return on the market portfolio.


�SYMBOL 168 \f "Symbol" \s 10 \h�	The beta is simply a standardized measure of this risk, and equals the ratio of i) the covariance of the asset's returns with the return on the market portfolio, and ii) the variance of returns on the market portfolio.


�SYMBOL 168 \f "Symbol" \s 10 \h�	The excess return on an asset is the expected return on that asset less the riskfree rate; the CAPM tells us that the required rate of return on any asset is the riskfree rate plus the product of the asset beta and the excess return on the market portfolio.


�SYMBOL 168 \f "Symbol" \s 10 \h�	The risk of an individual stock is given by its beta, whereas the risk of an investor's entire portfolio is given by its return variance.





�Exercises





Portfolio Theory:


1. Consider the following table, which gives a security analyst's expected return on two stocks for two particular market returns:





Market Return      Aggressive Stock      Defensive Stock


    .05                           .02                         .035


    .20                           .32                         .14


a. What are the betas of the two stocks?


b. What is the expected rate of return on each stock if the market return is equally likely to be 5% or 20%?


c. If the T-bill rate is 8% and the market return is equally likely to be 5% or 20%, draw the SML for this economy clearly marking the axes, the intercepts and the slope.


d. Plot the two securities on the SML graph.  If we define the alpha of a security as the excess of the actual expected return over the CAPM required return, what are the alphas of each?





�Answers to Exercises:





Linear and nonlinear functions:





3. The derivative of the expenditure function is .8 -2(.0015)I or 0.62.  Hence, we estimate that the individual will save (1-0.62) or 38% of the additional $5000.





Sampling:





1. Mean = 6; the estimate of the population standard deviation is 2.915; the standard deviation if we consider this a separate population is 2.608.





2. 


RA�
RB�
RA - E(RA)�
RB - E(RB)�
Product�
�
8�
3�
2�
-1�
-2.0�
�
5�
5�
-1�
1�
-1.0�
�
4�
2�
-2�
-2�
4.0�
�
3�
6�
-3�
2�
-6.0�
�
10�
4�
4�
0�
0.0�
�
Mean = 6�
Mean = 4�
�
�
Cov. = -1.0�
�
s.d. = 2.915�
s.d. = 1.581�
�
�
Corr. = -0.2169�
�
The covariance = -1; the correlation coefficient is -0.2169





3. �EMBED Equation ���





�EMBED Equation ���; �EMBED Equation ���


Hence the predicted value of RA, given RB = 2 is 8 - 0.5(2) = 7, which in this case overestimates RA.





�





4. �EMBED Equation ���





�EMBED Equation ���; �EMBED Equation ���





Hence the predicted value of RB, given RA = 4 is 4.8826 - 0.1471 (4) = 4.2942, which also overestimates RA.





�





�


Portfolio Theory:





1. a. A simple regression line can be drawn, or the two sample points given for each stock can be plotted against the market return, and the slope of the line computed.  This gives for the aggressive stock, a beta of (.32-.02)/(.20-.05) = 2, and for the defensive stock, a beta of (.14-.035)/(.20-.05) = 0.7.


b. The expected return on the market is .5(5)+.5(20) = 12.5%.  Correspondingly, the expected rates of return for the two stocks are computed as .5(2)+.5(32) = 17% and .5(3.5)+.5(14) = 8.75%.





d. Given the information in part c., we can compute the required rates of return on the two stocks as .08 + 2(.125-.08) = 17% and .08 + 0.7(.125-.08) = 11.15% for the aggressive and the defensive stocks respectively.  Hence the computed alphas are 17-17 = 0 and 8.75-11.15 = -2.4%.  Hence the defensive stock has too low an expected return, and is, therefore, overpriced.
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