OWL and Description Logics DL

By:
A.Aziz Altowayan @ Pace University
4/01/2014

Description Logics (DL)

What:

 Knowledge representation language. (serving primarily for formal description of concepts and roles (relations)).

Why:

Used for formal reasoning on the concepts of a domain.

OWL's relation to DL:

"In the beginning, IS-A was quite simple. Today, however, there are almost as many meanings for this inheritance link as there are knowledge-representation systems."

Ronald Brachman 1983

DL Terminologies

In OWL:

- A class is a collection of objects.
- A **property** is a directed binary relation.
- An instance is an object.

In DL, the above corresponds to:

- A concept.
- A role.
- An individual.

A **concept** corresponds to a *unary predicate* while a **role** corresponds to a *binary predicate*.

Concept (**Formulae**): e.g. Human, Male, Female, Animal Roles (**Modalities**): e.g. hasChild, hasParent, loves

Individuals (**Ground term**): e.g. Aziz, Lixin, USA

DL modeling and Knowledge Base

KR based on DLs, consists of 2 components:

- **TBox**, "*Terminological Box*" (describes terminology).
 - contains sentences describing concept hierarchies (i.e., relations between concepts).
 - e.g.) Every employee is a person.
- ABox, "Assertion Box" (assertions about individuals).
 - contains ground sentences stating where in the hierarchy individuals belong (i.e., relations between individuals and concepts).
 - e.g.) Bob is an employee.

"Reasoning in ontologies and knowledge bases is one of the reasons why a specification needs to be formal one."

Formal description and notations

Symbol	Description	Example	Read
Т	all concept names	Т	top
上	empty_concept	\perp	bottom
П	intersection or conjunction of concepts	$C \sqcap D$	C and D
\sqcup	<u>union</u> or <u>disjunction</u> of concepts	$C \sqcup D$	C or D
\neg	negation or complement of concepts	$\neg C$	not C
\forall	universal restriction	$\forall R.C$	all R-successors are in C
3	existential restriction	$\exists R.C$	an R-successor exists in C
	Concept inclusion	$C \sqsubseteq D$	all C are D
=	Concept equivalence	$C \equiv D$	C is equivalent to D
Ė	Concept definition	$C \doteq D$	C is defined to be equal to D
:	Concept assertion	a:C	a is a C
:	Role assertion	(a,b):R	a is R-related to b

See:

DL wiki

OWL syntax, DL syntax, and semantics

OWL abstract syntax	DL syntax	Semantics	
Class descriptions			
Class (A)	A	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	
owl:Thing	Т	$T^\mathcal{I} = \Delta^\mathcal{I}$	
owl:Nothing	1	$\perp^{\mathcal{I}} = \varnothing$	
intersectionOf $(C_1 \dots C_n)$	$C_1 \sqcap \cdots \sqcap C_n$	$(C_1 \sqcap \cdots \sqcap C_n)^{\mathcal{I}} = C_1^{\mathcal{I}} \cap \cdots \cap C_n^{\mathcal{I}}$	
unionOf $(C_1 \dots C_n)$	$C_1 \sqcup \cdots \sqcup C_n$	$(C_1 \sqcup \cdots \sqcup C_n)^{\mathcal{I}} = C_1^{\mathcal{I}} \cup \cdots \cup C_n^{\mathcal{I}}$	
complementOf (C)	$\neg C$	$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \backslash C^{\mathcal{I}}$	
$oneOf(w_1 \dots w_n)$	$\{w_1,\ldots,w_n\}$	$(w_1,\ldots,w_n)^{\mathcal{I}}=\{w_1^{\mathcal{I}},\ldots,w_n^{\mathcal{I}}\}$	
restriction (P someValuesFrom(E))	$\exists P.E$	$(\exists P.E)^{\mathcal{I}} = \{a \exists w. \langle a, w \rangle \in P^{\mathcal{I}} \land w \in E^{\mathcal{I}}\}$	
restriction (P allValuesFrom(E))	$\forall P.E$	$(\forall P.E)^{\mathcal{I}} = \{ a \mid \forall w. \langle a, w \rangle \in P^{\mathcal{I}} \to w \in E^{\mathcal{I}} \}$	
restriction (P hasValue(w))	$\exists P.\{w\}$	$(\exists P.w)^{\mathcal{I}}\{a \mid \langle a, w^{\mathcal{I}} \rangle \in P^{\mathcal{I}}\}$	
restriction (P minCardinality(n))	$\geq nP$	$(\geq nP)^{\mathcal{I}} = \{a \mid \#\{w \mid \langle a, w \rangle \in P^{\mathcal{I}}\} \geq n\}$	
restriction (P maxCardinality(n))	$\leq nP$	$(\leq nP)^{\mathcal{I}} = \{a \mid \#\{w \mid \langle a, w \rangle \in P^{\mathcal{I}}\} \leq n\}$	
restriction (P cardinality(n)) $P \in \{R, T\} \ w \in \{a, v\} \ E \in \{C, d\}$	= nP	$(\geq nP\cap \geq nP)^{\mathcal{I}}$	

See:

- complete list
- DL syntax and semantic

DL ALC and its concepts

Attributive concept Language with Complements ALC is a member of DL family, where:

- top is a concept.
- bottom is a concept.
- all atomic concepts are concepts
- the intersection of two concepts is a concept
- the union of two concepts is a concept
- the complement of a concept is a concept
- the universal restriction of a concept by a role is a concept
- the existential restriction of a concept by a role is a concept

Inference in DL (Decision problems)

"Description logics are created with the focus on tractable reasoning."

Examples of tasks required from reasoners are:

- Instance checking. (is a an instance of A?)
- Relation checking. (is a related to b?)
- Subsumption. (is A a subset of C?)
- Concept consistency. (is there any contradiction in A's definition?)

Finally, Tradeoff between Expressive Power and Efficient Reasoning Support.

The **richer** the language is, the **more inefficient** the reasoning support becomes.