
Technical Debt Through Silos

Anthony Escalona
City of New York - DoITT

2 Metro Tech 5th Floor
Brooklyn, NY, U.S.A 11201

aescalona@doitt.nyc.gov

Abstract—This paper explores organizational change manage-
ment (OCM) as an integral part of DevOps adoption to break
silos and remove boundaries between business, development, QA,
and operations groups. It attempts to depict the characteristics
of DevOps. The paper describes how DevOps can be applied to
software delivery. It also seeks to analyze and explore its interplay
with a view on several perspectives. These include: Conway’s Law,
Theory of Constraints, and Thinking Processes.

I. INTRODUCTION AND MOTIVATION

I understand that the organization is not yet aligned to
provide end-to-end agile. However, during my stint here, I feel
we have as a whole reached an impasse where much of our
challenges are not technical but rather cultural and operational.

In organizations, such as DoITT, that are not already steeped
in DevOps, the practical differences in the way the operations
and development groups approach their work can be a source
of tension. It will be difficult to architect an agile infrastructure
platform like Continuous Delivery (CD) without aligning goals
and objectives and embracing the same cultural idioms that
have enabled agile software development in private industries.
There are core values and concepts that must change to shape
organizational efforts to succeed. Insufficient consideration
of these cultural elements will make automation (improve
operational effectiveness) or modernization initiatives more
difficult, if not doomed to fail. Cohesion is necessary to create
synergy in the platforms we build. There must be a connection
among the individual functional groups such that the output
of the whole is greater than the output of each individual
function. In other words, the interaction of elements that when
combined produce a total effect that is greater than the sum of
the individual elements. Here, Development and Operations are
part of different hierarchal structures within an organization.
They both have different visions, missions, and SLAs metrics,
making it quite challenging to bring together people, processes,
and technologies but both share the same goals.

This paper attempts to explore Devops. It will further
explore the combined role of individuals and technology. It
will as a matter of core significance explain its characteristics,
environment, conditions, and practice. Is it possible to replace
people with robots like chatbots?

II. CONWAY’S LAW

Among computer science literature, Melvin Conway has
published many technical papers over the past few decades.
Most notable to the Empirical Software Engineering community
is his 1968 article titled ”How Do Committees Invent?”, which
presents a statement on the sociology of system design. He

describes how the communication paths between functional
groups inevitably influence the final product design. He codified
it to what now become known as Conway’s Law:

Organizations which design systems are constrained
to produce designs which are copies of the commu-
nication structures of these organizations.

As Conway notes, when technologists break down problems
into smaller blocks to delegate, they introduce coordination
problems. In many ways, formal communication structures
or rigid hierarchy appear to solve this coordination problem
but often lead to inflexible solutions. In organizations with
functional silos, management divides teams to make their
Human Resources department happy without much regard to
engineering efficiency [1]. Although each group may be good
at their part of the design (e.g., ops, app dev, or network),
to release a new capability or feature, all three teams must
be involved in building the capability. Organizations typically
optimize for efficiency for their immediate tasks rather than
the more abstract, strategic goals of the agency, particularly
when under schedule pressure. Infrastructure development is a
collaborative process reflecting the ideas of the people involving
communication structures across different organizations

III. SILOS

The core idea of DevOps is to break silos and remove
boundaries between business, development, and operations
teams. With decentralized, self-organizing groups, there is
a tendency to create a centralized center of excellence to
establish standards and guidelines that leverage best-practices
and mitigate the risk of inconsistency when using various
methods and tools[2]. DevOps and removal of departmental
silos extend CD through continuous integration and promotes
consistent, reliable and automated capabilities with frequent
iterations and fast feedback loops. CD tools provide visibility
to operational environments, streamline their workflows and
automate some build, release and deployment steps. In speaking
with some of the folks, I conclude we are all incongruent
in eliminating silos to improve agility, reliability, testability,
repeatability, and sustainability, etc. However, efforts might be
marginalized or stymied due to the lack of inclusion and support
because of the many protected silos. For individual contributors,
breaking these barriers are ways above their regular stratum. I’m
fearful the lack of cross-functional communications will impact
or impede our ability to solve architectural and engineering
solutions methodologically thus incurring additional technical
debt for the entire organization.



IV. DEVOPS

Specifically, in the context of Infrastructure and Operations,
DevOps addresses coordination by underpinning the three
widely accepted principles:

1) System Thinking and Flow:
a) Create fast flow of work as it moves from

Development to IT Operations (e.g. 1:1 parity
between development, test, and production
environments)

2) Feedback Loops:
a) Demonstrate the ability to shorten and amplify

the feedback loops so issues can be fixed
at the source and avoid rework (e.g. Fitness
Functions and Telemetry).

3) Experimentation and Learning
a) Somehow create a culture that simultaneously

fosters experimentation, learning from failure,
and the importance of repetition and practice
are needed.

DevOps practices address all of these coordination chal-
lenges by establishing collaborative cross-functional develop-
ment, test, and operational teams that share their responsibility
for maintaining the overall system running the software and
further prepares the software to run on a specific system with
greatly increased quality feedback as well as automation. This
engineering efficiency will help with automating key build
processes, deployment, and management tasks to speed up
the deployment process. DevOps is a client-centric approach
enabling rapid delivery of capabilities to them, which requires
collaboration across the software delivery value stream that
includes teams spanning across business, development, qa, and
operations. DevOps brings together all these groups, thereby
making process of development very lean.

V. THEORY OF CONSTRAINTS

One of the difficulties in shifting organizations towards
a more systemic model like DevOps is that constraints can
impede one’s thinking. A paper presented by Pegels and
Watrous [3] reflects a case study of the successful application
of the theory of constraints (TOC), a productivity improvement
tool proposed and developed by Goldratt and Fox [4]. TOC
was in the forefront at that time and continues to be actively
used in industry because of its considerable potential to (1)
identify throughput problems, (2) serve as a guide to correct the
throughput problems, and (3) generate significant improvements
in productivity and efficiency. TOC views processes within
organizations as “chains”, wherein the entire system is only as
strong as its weakest link. The purpose of TOC is to identify the
weak link (constraint) within an organization and to strengthen
this link to the point where it is no longer the limiting factor
in determining the strength of the chain organization. TOC is
a continuous improvement process where a system is viewed
as a flow, and the objective of the process is to strengthen it
by identifying and eliminating all bottlenecks continually.

The TOC includes a sophisticated problem-solving method-
ology called the Thinking Processes. The Thinking Processes
are optimized for complex systems with many interdependen-
cies (e.g. manufacturing lines). They are designed as scientific

“cause and effect” tools, which strive first to identify the causes
of undesirable effects (UDEs) and then remove the UDEs
without creating new ones.

Just understanding that adopting DevOps practices and
expanding capacity upstream to improve system flow will
not necessarily increase the overall capacity of the system
unless you identify and increase capacity in the bottlenecks
identified through the TOC. If the weakest link is the speed
of delivery of new functionality or the systems’ operational
behavior, then DevOps has considerable benefits to offer. As
TOC continued to evolve, it became clear that a limiting factor
to the organization’s performance is not always a bottleneck
resource, but can be of different nature, like cultures, policies,
decisions, etc.

VI. COORDINATION

In software engineering, for example, there are tasks or
operations that are time-critical such as code development.
Usually the problem to be resolved is directly linked to a long
trail of related and successive tasks. The incidents show that
a problem with one of these tasks will result in a standstill
of the entire development process. The delay in waiting for
a resolution of the problem consequently translates to a loss
of time and waste. In order to better illustrate the problems
to be addressed, the case study, DoITT was chosen as an
example. The choice of DoITT, as a basis, for the assessment
of coordination is based on the following: (1) DoITT provides
efficient and effective delivery of IT services, and infrastructure.
(2) It utilizes the of people and technology. (3) It is going
through a massive modernizing efforts by implementing state-
of-the-art information technology to improve services to its
agencies. Given the enumerated reasons, DoITT therefore serves
as a logically ideal ground for such discourse.

VII. EVOLUTION

Many opportunities exist to modernize some of the co-
ordination (i.e., intake processes) challenges by taking a
leaner approach by identifying bottlenecks of system flows.
For instance, constant continuous improvements of DevOps
practices have further solved some of the coordination problems
locally by replacing snowflakes with Immutable Infrastructure
as Code (IIAS). Snowflake servers are ones that have been
manually crafted by an operations person, and all future
maintenance is done by hand [5]. As a result, making it
hard to reproduce and replace, making things like scaling
and recovering from issues difficult. IIAS refers to systems
defined entirely programmatically. All changes to the system
must occur via the source code, not by modifying the running
operating system. Thus, the entire system is immutable from an
operational standpoint — once the system is bootstrapped, no
other changes occur. Importantly, IIAS remove needless vari-
ables thus eliminating many unknown factors and complexities
as possible. Snowflake servers would be virtually impossible to
build [6] [7] fitness functions [8] that can provide metrics and
telemetry how the latest patch of the operating system might
affect the application. Fitness functions are used to provide
feedback how close a solution is to achieving the intended
design. They encompass a variety of techniques to ensure the
architecture does not change in undesirable ways, including
metrics, tests, and other verification tools [1].

2



VIII. AGILE

A move closer to agile adoption might help where parallel
execution amongst all silos in every project is essential. It
will eliminate the inherent problems that stem from each stage
of infrastructure release life-cycle. With many back-and-forth
exchanges, incomplete or misinterpreted information moving
up and down the chain, and Project Management or lack thereof
trying to keep everyone coordinated, there are too many hand-
offs, ticketing, and linear processes causing the challenges
and delays we are seeking to reduce, and ultimately eliminate,
with Agile. Parallel execution can significantly diminish the
dissipation of effort that comes with the lack of coordinated
communication across teams. In practice, this will mean that
each functional group involved in a particular release will be
working off a common backlog, and should adopt the same
Agile processes. There is enough context (not control) here
to have a charter that sets expectations, quality, metrics, and
vision around a capability or feature. For example, continuous
delivery gives us context through automation. If expectations
are through automation (process as code), then people have
freedom within that context to accomplish great things through
experimentations. And when things do fail which often they
do, then we asked ourselves what context, fitness functions,
telemetry, or processes have we failed to set? Without putting
any blame on the individuals or divisions; we just automatically
make those corrections through code.

IX. DEVOPS AI

This paper presented boundaries between business, devel-
opment, and operations groups involving software delivery.
DoITT has extensive amounts of organizational silos across
various departments and divisions. Even with Agile adoption,
coordination will still result in slow processing time of
software delivery. Furthermore, the evolution of immutable
infrastructures have exacerbated delivery through delays and
missed deadlines. Generating chat bots using AI small to
represent different organization groups to improve operational
coordination and efficiency is worth exploring. Business con-
straints, organizational constraints, and other coordinational
constraints are potentially solvable through AI automation.
Lee[9], in their paper, have identified problems of scalability
under the explosive growth of Internet traffic and high-speed
access. They presented a Hadoop-based traffic monitoring
system that performs analysis of the network traffic in a
scalable manner. Similarly, how can AI help with our constraint
problems?

X. SUMMARY

This short paper represents an attempt at exploring DevOps
and improving cultures. It highlights the study of Conway’s
with the aim of shedding light on how process and structures
are formed.

Many innovative experimentations are still needed to bring
these AI capabilities forward. It is best achieved by eliminating
boundaries, bottlenecks, and improving coordination in how
we work. To this end, I propose an AI chatbot to speed up
operational processes and lower constraints by using machine
learning to improve operational decisions.

XI. FUTURE WORK

Bots are relatively new comers and more research is needed
to determine the efficacy on using AI or machine learning to
interact with humans through bots to reduce organizational
silos.

ACKNOWLEDGMENT

My sincerest gratitude to Eric Ip and Kim Truong for
reviewing the paper.

REFERENCES

[1] N. Ford, R. Parsons, and P. Kua, Building Evolutionary Archi-
tectures: Support Constant Change. Sebastopol, CA: O’Reilly
Media, Inc, 2017, iSBN-13: 978-1491986363.

[2] G. Shrikanth, “Deepdive: Devops and its impact on software de-
velopment,” Online, 2017, https://fit.summon.serialssolutions.com,
last access October 2017.

[3] C. Pegels and C. Watrous, “Application of the theory of constraints
to a bottleneck operation in a manufacturing plant,” Online, 2005,
https://doi.org/10.1108/17410380510583617, last access October
2017.

[4] E. Goldratt and J. Cox, The Goal: A Process of Ongoing
Improvement. New York, NY: Routledge, 1986, iSBN-13: 978-
0884271956.

[5] H. Virdo, “What is immutable infrastructure,” Online, 2017,
https://www.digitalocean.com/community/tutorials/what-is-
immutable-infrastructure, last access October 2017.

[6] N. Li, A. Escalona, and T. Kamal, “Skyfire: Model-based testing
with cucumber,” in Software Testing, Verification and Validation
(ICST), 2016 IEEE International Conference, ser. ICST’17,
Chicago, IL, April 2017.

[7] N. Li, M. West, A. Escalona, and V. Durelli, “Mutation testing
in practice using ruby,” in Software Testing, Verification and
Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference, ser. ICST’15, Graz, Austria, April 2017.

[8] M. Harmon and J. Clark, “Metrics are fitness functions too,”
in Software Metrics, 2004. Proceedings. 10th International
Symposium on, 2004.

[9] Y. Lee and Y. Lee, ”Toward scalable internet traffic measure-
ment and analysis with Hadoop,” ACM SIGCOMM Computer
Communication Review, vol. 43, (1), pp. 5, 2012. . DOI:
10.1145/2427036.2427038.

3


