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Abstract

I propose Bayesian Markov Chain Monte Carlo (MCMC) estimation of systemic
risks proposed in Brownlees and Engle (2012). The systemic risks are measured by
MES (marginal expected shortfall), LRMES (Long Run Marginal Expected shortfall)
and SRISK (expected capital shortage of a firm conditional on a substantial market
decline). The analysis is performed incorporating Dynamic Conditional Correlation
(DCC) model with asymmetric volatility using generalized threshold conditional volatil-
ity model (GTARCH). The analysis is compared with GJR-GARCH volatility model.
The proposed model captures leverage effect (asymmetry) in both ARCH and GARCH
terms. We find that distributions of out-of-sample volatility forecasts and MES risks are
statistically different for highly ranked financial institutions in periods of low volatility
using both DCC-GJR-GARCH and DCC-GTARCH models. However, LRMES distri-
butions and SRISK distributions could be highly overlapping. Moreover, when volatility
is high it is hard to rank financial institutions based on either volatility, MES, LRMES
or SRISK measure as distributions overlap. The SRIKS measures become very close
when leverage ratios of companies are similar. Thus, in order to distinguish systemic
risk measures incorporating uncertainty additional factors, such as liquidity, are needed.

KEY WORDS: Markov Chain Monte Carlo; Systemic Risks prediction; Dynamic Con-
ditional Correlation; Asymmetric GARCH; Metropolis-Hastings steps.

1 Introduction

After the 2008-2009 financial crisis the topic of systemic risk became increasingly more
important in both academic research and public policy discussion. Regulators have been
implementing new capital requirements, stress tests and "living wills" (resolution plans) for
financial institutions. The Dodd Frank Act and Basel regulation are aimed at finding ways
to make financial system more stable and resilient to major shocks, in particular, due to
concentration of risk in large and interconnected financial institutions. While every financial
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crisis has its own major risk driver the common feature of crises is instability of some part of
the financial system that serves as an important intermediary between real sector economy
and investors. While a firm is affected by a crisis it depends on the interconnectedness of
the firm with rest of the system how its potential bankruptcy may affect the rest of the
economy. If a financial firm is large and highly interconnected failure of such firm causes
considerable strain to the rest of the financial sector and a negative externality on the rest of
the economy.1 If a large interconnected firm experiences capital shortage it may not be able
to raise capital on its own and may implicitly rely on government bailout using taxpayer
funds.

Following recent studies of systemic risks by Acharya et. al (2010) and Brownlees and
Engle (2012) among others I introduce Bayesian estimation of MES (marginal expected
shortfall) and SRISK (expected capital shortage of a firm conditional on a substantial
market decline). The rankings for MES and SRISK are used to analyze systemic risks of
financial institutions and are daily reported by Volatility Institute2. However, this measures
are reported without uncertainty around estimates and thus one cannot distinguish if the
difference in rankings of large financial institutions is statistically significant. Many other
measures were introduced in literature such as CoVaR (Adrian and Brunnrmeier (2011),
systemic risk index CAITFIN (Allen et. al (2012), probability of default measures (Huang
et. al 2011). These studies looked at contribution of a firm in distress to overal risk of
the financial system. Recent surveys of systemic risk analytics by Bisias et al. (2012) and
Brunnermeier and Oehmke (2012) among others also do not show how to measure and
incorporate uncertainty for systemic risk measures. To fill this gap present paper shows
how to estimate MES and SRISK using Bayesian Markov Chain Monte Carlo (MCMC)
algorithms.

In this paper I also introduce a generalized threshold conditional volatility model (GTARCH)
and compare it to traditional asymmetric models of volatility. Since introduction of the
generalized autoregressive conditional heteroscedasticity (GARCH) model there have been
many extensions of GARCH models that resulted in better statistical fit and forecasts. For
example, GJR-GARCH (Glosten, Jagannathan, & Runkle (1993)) is one of well-known ex-
tensions of GARCH models with an asymmetric term which captures the effect of negative
shocks in equity prices on volatility commonly referred to as a "leverage" effect. The widely
used GJR-GARCH model has a problem that ARCH (α) coefficient tends to takes a mean-
ingless negative value in unconstrained estimation of equity returns volatility. The typical
solution to this problem is setting coefficient of alpha to zero in the constrained estimation.

In the proposed GTARCH model both coefficients, ARCH (α) and GARCH (β), are
allowed to change to reflect the asymmetry of volatility due to negative shocks. As a subset
of this model GJR-GARCH model allows for asymmetry only in ARCH. Alternatively, the
GTARCH model allows for asymmetry only in GARCH or no asymmetry. Additional asym-
metric GARCH term shifts the value of α upward compared to the GJR-GARCH model.
In particular, unconstrained estimation may result in statistically significant negative α for

1Theoretical academic research showed this, for example, in the paper by Acharya, V., Pedersen, L.,
Philippon, T., and Richardson, M. (2010).

2See http://vlab.stern.nyu.edu
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the GJR-GARCH model, while in the GTARCH model α is typically insignificant. The
suggested more flexible GTARCH model also shows more persistent dynamics for GARCH
parameters for negative news and lower persistence for positive news. Our results for equity
returns show that compared to GJR-GARCH and GARCH our model predicts higher level
of volatility in high volatility periods and lower levels of volatility in low volatility periods.

The GTARCH is used within DCC (dynamic conditional correlations model) in order to
measure MES and SRISK. In order to estimate MES Brownlees and Engle (2012) first use
the Maximum Likelihood estimation of GJR-GARCH volatility models for market and firm
returns and then dynamic conditional correlation (DCC) model for tail dependence. MES
can be derived as a function of volatility, correlation and tail expectations of a firm and
market return innovations. When measuring tail expectation Brownlees and Engle (2012)
use nonparametric kernel estimation without incorporating uncertainty. In this paper using
Bayesian MCMC estimation I obtain distributions for parameters of interest including tail
risk measures.

In this paper MCMC algorithms are used for estimation of all volatility models and dis-
tributions of systemic risks are derived from MCMC draws. The advantage of Markov Chain
Monte Carlo algorithms is their natural ability to generate posterior predictive densities for
variables of interest, such as volatility, correlation, value at risk, expected shortfall, etc.
I use Metropolis-Hastings steps with random walk draws. The algorithms for estimating
more general ARMA-GTARCH models are based on extension of algorithms in Goldman
and Tsurumi (2005).

As an additional meaure of systemic risks I use Credit Default Swaps (CDS). CDS
spreads are widely used to access default risks of financial institutions and sovereign bonds.
the relation between CDS spreads, bond yield spreads and credit rating announcements.
Carr and Wu (2011) show the relation between CDS spreads and out-of-the-money Amer-
ican put options. The CDS premiums change dramatically over time and may exhibit
nonstationary behaviour. It can be argued that systemic risks of financial institutions can
be related to the level and volatility of CDS premiums.3 In this paper I estimate GTARCH
model for the log-differences of CDS spreads and find that asymmetric reaction resulting
from higher spread is better explained by the GTARCH than the GJR-GARCH model.

Overall, this paper offers the following contributions. First, I propose Bayesian esti-
mation of a GTARCH model and compare its performance with traditional asymmetric
volatility models. Second, the new model is applied for forecasting volatility of equities and
log changes of CDS premiums. Fourth, the equity volatility forecasts combined with corre-
lation with the market are used for the measurement of systemic risks, MES and SRISK,
in a fashion similar to Brownlees and Engle (2012) but incorporating better asymmetric
volatility properties and uncertainty for risk measures.

The remainder of the paper is organized as follows. Section 2 presents the measure-
ments of the systemic risks and section 3 presents the GTARCH model. Section 4 presents
summary statistics of the data for Bank of America (BAC), JP Morgan Chase (JPM), Citi

3Work in this direction was recently done by Oh and Patton (2013)
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group (CIT) and S&P 500. Section 5 presents the MCMC algorithms. Section 6 estimates
models using MCMC and shows distribution of systemic risk measures in periods of high
and low volatility. Section 7 concludes.

2 Measurement of Systemic Risk

Let rt and rm,t be the daily log returns of a firm and the market correspondingly.
Following Brownlees and Engle (2012) I consider the following model for the returns:

rmt = σmtεmt (1)

rt = σtρtεmt + σt

√

1− ρ2t εt

where εmt, εt are independent and identically distributed variables with zero means and unit
variances, σt and σmt are conditional standard deviations of the firm return and the market
return correspondingly, and ρt is conditional correlation between the firm and the market.

This model is also called the dynamic conditional beta model with βt = ρt
σt
σmt

and tail

dependence on correlation of firm returns and the market

rt = βtrmt + σt

√

1− ρ2t εt (2)

The conditional variances and correlation are modelled using the GJR-GARCH DCC
model in Brownlees and Engle (2012). In the next section I introduce the generalized
threshold GARCH volatility model and show that it outperforms GJR-GARCH for equities.

In this paper I only consider the market based measures of systemic risks. Other macro-
prudential and microprudential tests are beyond the scope of this paper but are described
in Bisias, Flood, Lo and Valavanis (2012) and Acharya, Engle and Pierret (2013) among
others.

The first considered systemic risk measure is the daily marginal expected shortfall (MES)
which is the conditional expectation of a daily return of a financial institution given that
the market return falls below threshold level C. In practice, in VLAB it is assumed that
market falls by more than 2%, i.e. the threshold C = −2%.

MESt−1 = Et−1(rt|rmt < C) (3)

= σtρtEt−1(εmt|εmt ≤ C/σmt) + σt

√

1− ρ2tEt−1(εt|εmt ≤ C/σmt)

The computation of the expected shortfall following Scaillet (2005) using nonparametric
estimates given by:

Et−1(emt|emt ≤ α) =
∑t−1

i=1 emiΦh(
α−emi
h )

∑t−1
i=1 Φh(

α−emi
h )

(4)
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where α = C/σmt, Φh(t) =
∫ t/h
−∞ φ(u)du, φ(u) is a standard normal probability distribution

function used as kernel, and h = T−1/5 is the bandwidth parameter.

The second measure is the long run marginal expected shortfall based on the expectation
of the cumulative six month firm return conditioned on the event that the market falls by
more than d% (which by default is 40%) in six months.

LRMESt = 1− exp(ln(1− d) ∗ β) (5)

Finally, the capital shortfall of the firm based on the potential capital loss in six months
is defined as

SRISKt = max{0; kDt − (1− k)(1− LRMESt)Et} (6)

where Dt is the book value of Debt at time t, Et is the market value of equity at time t
and k ≈ 8% is the prudential capital ratio of the US banks. It is assumed that the capital
loss happens only due to the loss in the market capitalization LRMES ∗ Et

3 Generalized Threshold GARCH model

GJR-GARCH (Glosten, Jagannathan, & Runkle (1993)) is one of the well-known asym-
metric volatility models which captures the effect of negative shocks in equity prices on
volatility commonly referred to as a "leverage" effect. The model captures risk-aversion
of investors with volatility increasing more as a result of a negative news compared to the
positive news.4

Consider the GJR-GARCH volatility model for returns rt with mean µ given in equation
(7) below.

GJR-GARCH(1,1,1)

rt = µ+ εt (7)

σ2t = ω + αε2t−1 + γε2t−1I(rt−1 − µ < 0) + βσ2t−1

where I is a (0,1) indicator function, σt is conditional volatility.

The Generalized Threshold GARCH (GTARCH) model that I introduce in equation (8)
is an extension of the model above allowing GARCH term to change for a negative news
(εt−1 < 0).

GTARCH(1,1,1,1)

rt = µ+ εt (8)

σ2t = ω + αε2t−1 + γε2t−1I(rt−1 − µ < 0) + βσ2t−1 + δσ2t−1I(rt−1 − µ < 0)

4EGARCH is an alternative model but it is in logs of variance rather than typical GARCH variance.
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The Stationarity of GTARCH Model

The weak stationarity condition in the GARCH model for the existence of the long run
unconditional variance σ2 is given by condition:

α+ β < 1, σ2 =
ω

1− α− β

Similarly for the GTARCH model we can define θ = E(I(rt < µ)) which is percentage
of observations with rt < µ. Then the weak stationarity condition and the unconditional
variance are given by

α+ β + γθ + δθ < 1, σ2 =
ω

1− α− β − γθ − δθ

4 Data

In this section I consider the equity returns daily data for BAC, JPM, CIT and S&P 500
index for the period 1/04/2001-12/31/2012 from CRSP database. I also consider the CDS
spreads on the 5 year secured bonds of BAC and JPM for the period 9/06/2001-10/08/2013
from Bloomberg. All these data will be used for the analysis of systemic risks in Section 6.

The summary statistics of the data are given in Table 1. All the series have fat tails
with the kurtosis over 10 and some skewness. Even though the CDS spreads typically have
significant positive skewness the log-differences of CDS spreads for BAC and JPM do not
show considerable skewness.

There may be some autocorrelation present in the model although AR(1) coefficients
are not large.

Table 1 here

I consider the GTARCH model for the returns and log-differences of CDS spreads.
Unlike for the equity returns the bad news in CDS market is when the spreads increase.
Thus, I change the sign of the error in the dummy indicator function to I(rt−1−µ > 0) for
the CDS data.

5 Markov Chain Monte Carlo Algorithms

Markov Chain Monte Carlo (MCMC) algorithms allow to estimate posterior distribu-
tions of parameters by simulation and are especially useful when the dimension of parame-
ters is high, since the problems of multiple maxima or of initial starting values are avoided.
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A simple intuitive explanation of the Metropolis-Hastings algorithm is given in Chib and
Greenberg (1995).

MCMC algorithms were developed by Chib and Greenberg (1994) for the ARMA model
and by Nakatsuma (2000) and Goldman and Tsurumi (2005) for the ARMA-GARCHmodel.
Chib and Greenberg (1994) (as well as Nakatsuma (2000)) use the constrained nonlinear
maximization algorithm in the MA block. Alternatively one can use a Metropolis-Hastings
algorithm with a random walk Markov Chain as was done e.g. in Goldman and Tsurumi
(2005). The random walk draws speed up the computational time of the MCMC algorithms
without losing much of the acceptance rate of the Metropolis-Hastings algorithm. In this
paper I propose the algorithms for a GTARCH model which is an extension of the algorithms
developed in Goldman and Tsurumi (2005).

Let the prior probability for the GTARCH volatility model be given by

π(µ, α, γ, β, δ) ∝ N(µ0,Σµ) N(α0,Σα) N(γ0,Σγ) (9)

× N(β0,Σβ) N(δ0,Σδ)

where µ, α, γ, β and δ are the GTARCH parameters and have proper normal priors with
large variances.

Consider the Dynamic Conditional Correlations (DCC) model with GTARCH volatility.
The posterior pdf of DCC model is

p(η1, η2, ψ|data) ∝ π(η1, η2, ψ)× L(data|η1, η2, ψ) (10)

ηi = µi, αi, γi, βi, δi

ψ = ωij , α, β

Let n=2 (2 firms, or one firm and a market).

The DCC log likelihood is given by

logL = log(Lv(η1, η2) + log(Lc(η1, η2, ψ) (11)

log(Lv) = −0.5
∑

(nlog(2π) + log(σ2i,t) +
r2i,t
σ2i,t

) (12)

log(Lc) = −0.5
∑

(

log(1− ρ212,t) +
z21,t + z22,t − 2ρ12,tz

2
1,tz

2
2,t

1− ρ212,t

)

(13)

ρ12,t =
q12,t√
q11,tq22,t

(14)

qij,t = ωij(1− α− β) + αzi,tzj,t + βqij,t−1 (15)

(16)
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where ri,t and rm,t are daily log returns of firm i and the market correspondingly. The

standardized returns: zi,t =
ri,t√
hit

Step 1: I estimate parameters in blocks for each asset GTARCH model using random
walk draws.

Step 2: using fitted volatilities from step 1 find standardized returns zit and estimate
dynamic correlation between two assets. I estimate parameters in blocks using random walk
draw: (i) ARCH parameters: α and ω12 as part of ARCH, (ii) GARCH parameters β, (iii)
Constant terms ωii = 1− α− β for i=1,2.

Each step is a separate MCMC chain and careful tests of convergence are applied.5

6 Data Analysis of MES and SRISK

I consider Bank of America, Citigroup and JP Morgan Chase ranked in the top three
highest systemically important financial firms on VLAB website as of December 31,2012-
June 7, 2013 (Tables 5-6).

Table 2 here

For the systemic risk modeling as in Brownlees and Engle (2012) I use market data on
stock prices, market capitalization and book value of debt for large financial institutions.
The data are from CRSP for returns and market capitalization for the period 2001/01/02-
2012/12/31. The book value of debt is from COMPUSTAT.

The summary statistics of returns are given in Table 1, the results of Bayesian estimation
of GTARCH volatility models are given in Table 3 and the results for the DCC correlation
are given in Table 4. I presented the posterior means of parameters and 95% highest
posterior density intervals (HPDI).

Tables 3 and 4 here

The dynamic volatility estimated at posterior means of parameters is plot in Figure
1. The correlation of firms with the market estimated at posterior means of parameters is
given in Figure 2.

The marginal expected shortfall (MES) is given in Figure 3, LRMES in figure 4 and
SRISK in Figure 5. All the graphs use posterior means of parameters and equations (3)-(6)
for computation of the measures of interest.

5I use the graphs of draws, fluctuation test (see Goldman and Tsurumi (2005)) and the acceptance rates
to judge convergence. The results are available from author on request.

8



Finally I consider a 1 day out-of-sample prediction of MES, LRMES and SRISK and
derive the posterior distribution for each of these quantities using posterior distributions of
σT+1, σm,T+1, ρT+1 obtained from the MCMC draws.

The practical implementation is as follows.

Figures 6,7,8 show the posterior pdfs of MES, LRMES and SRISK correspondingly for
the first two firms listed in Table 4: BAC and JPM. It turns out that their measures of risk
are statistically different with 95% HPDI’s not crossing. This confirms that the rankings
used on the VLAB website are distinguishing firms in terms of severity of the systemic risks
they impose on the system.

Figure 1 shows the returns data for BAC, JPM and SPX. The dynamic GTARCH
volatility estimated at posterior means of parameters is plotted in Figure 2. While before
the financial crisis JPM had higher level of volatility, during the crisis and after the crisis
BAC volatility level exceeded JPM. Not surprisingly the SPX has lower equity volatility
then both banks. The dynamic correlation of firms with the market also estimated at
posterior means of parameters is given in Figure 3. For comparison I also present 100-day
rolling correlations in Figure 4. Both graphs show changing patterns of correlation over
time with less variability for the DCC-GTARCH model.

After the equity volatility models were estimated for each bank I found the distribu-
tions of 1% Value at Risk (VaR) and showed them in Figure 5 for a $1 million portfolio
using (a) Normal distribution for the error term and (b) historical simulation of residuals
(bootstrap). These pdfs of VaR show clearly that the VaR are statistically different for
different distributional assumptions of the error term. Since the historical simulation shows
significantly higher VaR it is preferable to use it rather than Normal distribution.

Figure 6 shows the CDS spreads and log-differences of CDS spreads. The CDS spreads
for BAC and JPM seem to move together to some extent. As with equity volatility the CDS
spreads were higher for JPM before the financial crisis and lower for the most time starting
from the financial crisis. The log-differences of CDS spreads exhibit volatility clustering
similar to equity returns. Figure 7 shows the leverage of BAC and JPM and the dynamics
is similar to the CDS spreads with BAC leverage highly exceeding JPM leverage starting
from the financial crisis.

The systemic risk measures of the marginal expected shortfall (MES), LRMES and
SRISK over time are presented in Figures 8-10. All the graphs use posterior means of
parameters of the DCC-GTARCH model and equations (3)-(6) for computation of the
measures of interest. Half of the sample is used for MES of the first observation in 2006.
We can see that the MES results also show higher risks for BAC starting from the crisis when
BAC leverage increased dramatically and lower MES before the crisis. However, graphs are
close and more careful analysis of the distributions of MES at a particular point is needed.
Graphs of LRMES and SRISK show similar patterns with peaks during the financial crisis
and potential treasury bonds default with debt ceiling reached in August 2011. The SRISK
average values presented in Figure 10 are similar to values reported by VLAB such as in
Table 5. For example, at the end of the sample (2012/12/31) SRISK is about 104.2 $
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billion for BAC and 80.2 $ billion for JPM using MCMC for the GJR-GARCH model as in
Brownless and Engle (2012). The VLAB values are 101 $ billion for BAC and 75.8 $ billion
for JPM.6

Finally I consider the whole posterior distribution for MEST , LRMEST and SRISKT

derived from the posterior distributions of σT , σm,T , ρT obtained from the MCMC draws.
Figure 11 shows the distribution of MES and SRISK for JPM at the end of the sam-
ple (T=2012/12/31) which is in the period of low volatility, while Figure 12 shows these
measures in the period of high volatility (T=2008/08/29). I present the results when the
GTARCH, GJR-GARCH and GARCH models are used. The interesting implication of the
GTARCH model is that the results for volatility, MES and SRISK are lower in a period
of low volatility and higher in a period of high volatility compared to GJR-GARCH and
GARCH. GARCH model is less responsive than other two models to the periods of high
and low volatility as it has no asymmetric news effect that captures risk-aversion. It seems
that the TGARCH model captures risk-aversion better than GJR-GARCH model that is a
commonly used model in the literature.7

For the remainder of the graphs I use the GTARCH model. Figures 13-15 compare
the BAC and JPM posterior pdfs of MES, LRMES and SRISK for the low volatility time
(T=2012/12/31). It turns out that their measures of risk are statistically different with
distributions not crossing. This means that in the periods of low volatility the rankings of
BAC being above JPM are justified distinguishing firms in terms of severity of the systemic
risks they impose on the system. Figures 16-17 show MES and SRISK for JPM and BAC at
the time of high volatility (T=2008/08/29) and we see that the MES distributions are close
to each other with 95% highest posterior density intervals intersecting. JPM had higher
leverage on that day and it resulted in somewhat higher SRISK but the results for BAC and
JPM are not statistically significant. The results not presented here to save space indicate
that the same pattern happens at other dates in periods of high volatility.

7 Conclusion

In this paper I considered Bayesian estimation of systemic risks. Using a new asymmetric
GARCH model and capturing uncertainty around the measures I found that MES, LRMES
and SRISK are statistically different for major financial firms at the times of low volatility,
however, MES measures in particular may be very close at the times of uncertainty such as
the financial crisis.

The paper has several contributions. This is the first paper to introduce Bayesian
analysis for the systemic risk measures and derive the full distribution of those measures
compared to simple point estimates used in the literature. Second, a new asymmetric
GTARCH model introduced in this paper generalizes popular asymmetric volatility GJR-

6The results may the difference in estimation period used and constraints imposed on the GJR-GARCH
model by the VLAB.

7The other asymmetric GARCH model is EGARCH
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GARCH model and improves its properties. Third, I provide the whole distribution of
systemic risk measures and show how to distinguish risks of different institutions. I also
estimate GTARCH volatility of log-difference in CDS spreads showing alternative measures
of financial risks.

For the future work I would like to consider different distributional assumptions for the
error term. It would be also interesting to compare the market based measures of systemic
risks used in this paper to the results of macroprudential stress tests.
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Table 1: Summary statistics for daily equity returns
BAC CIT JPM SPX

mean 0.045 -0.009 0.047 0.011
std 3.406 3.673 2.841 1.342
Skew 0.904 1.468 0.829 0.017
Kurt 26.08 42.668 15.931 11.143
AR(1) -0.011 0.046 -0.089 -0.091

Notes: Equity returns are measured in basis points. Equity prices data are for the period 1/04/2001-

12/31/2012 from CRSP database.
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Table 2: VLAB Systemic Risks for US institutions

Institution SRISK% RNK SRISK ($ m) LRMES Beta Cor Vol Lvg
29-Aug-08

Citigroup 12.89 1 132,039 73.64 2.61 0.79 63.4 19.99
JPMorgan Chase 9.37 2 96,045 70.95 2.42 0.74 62.9 13.42
Bank of America 9.24 3 94,637 77.27 2.9 0.74 75 11.94
Freddie Mac 6.74 4 69,069 92.26 5.01 0.44 221.2 297.76
American International Group 6.62 5 67,811 83.01 3.47 0.69 97 17.62
Merrill Lynch 6.6 6 67,588 82.66 3.43 0.78 83.8 22.45
Fannie Mae 6.56 7 67,156 94.01 5.51 0.51 205.4 115.68
Morgan Stanley 6.39 8 65,416 65.62 2.09 0.74 53.7 23.01
Goldman Sachs 5.63 9 57,676 58.04 1.7 0.75 43.3 16.99
Wachovia Bank 5.09 10 52,131 79.05 3.06 0.66 87.3 22.4
Lehman Brothers 4.71 11 48,249 92.18 4.99 0.74 130.2 55.88
MetLife 2.4 12 24,589 51.59 1.42 0.79 34.4 14.56
Prudential Financial 2.12 13 21,714 49.82 1.35 0.72 36.1 15.39
Washington Mutual 2.03 14 20,787 74.95 2.71 0.45 119.8 41.5

31-Mar-09
Bank of America 17.16 1 160,739 85.42 3.77 0.74 195.9 48.7
Citigroup Inc 14.12 2 132,262 85.42 3.77 0.66 219.3 121.21
JPMorgan Chase 13.91 3 130,281 75.58 2.76 0.8 133.1 20.11
Wells Fargo 8.94 4 83,752 80.99 3.25 0.73 170.5 20.53
American International Group 6.21 5 58,141 75.83 2.78 0.44 252.2 55.88
Goldman Sachs 5.47 6 51,257 60.93 1.84 0.8 88.3 18.58
Morgan Stanley 4.28 7 40,046 73.09 2.57 0.77 127.6 24.41
MetLife 3.64 8 34,045 80.2 3.17 0.73 168.5 26.12
Prudential Financial 3.45 9 32,280 88.65 4.26 0.74 221 52.34
Hartford Financial 2.25 10 21,095 84.34 3.63 0.72 194.2 106.08

31-Dec-12
Bank of America 17.98 1 100,700 53.52 1.5 0.66 28.8 16.4
Citigroup Inc 15.03 2 84,188 48.26 1.29 0.66 24.9 16.02
JPMorgan Chase 14.81 3 82,949 43.57 1.12 0.75 18.8 13.69
MetLife 8.62 4 48,306 56.95 1.65 0.73 28.6 22.75
Goldman Sachs 7.62 5 42,680 52.08 1.44 0.74 24.6 15.14
Prudential Financial 7.05 6 39,517 51.59 1.42 0.75 23.2 26.44
Morgan Stanley 6.93 7 38,838 51.62 1.42 0.69 25.9 19.42
Hartford Financial 3.34 8 18,721 54.23 1.53 0.73 26.3 30.17
American International Group 2.34 9 13,109 52.56 1.46 0.62 29.4 9.6
Lincoln National 2.31 10 12,925 52.81 1.47 0.75 24.7 29.11

Source: http://vlab.stern.nyu.edu
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Table 3: Estimation results for various volatility models

GTGARCH GJR-GARCH GTGARCH_0 GARCH
µ 0.035 (0.016) 0.030 (0.016) 0.040 (0.017) 0.043 (0.016)
ω 0.037 (0.005) 0.034 (0.004) 0.039 (0.005) 0.036 (0.005)
α 0.059 (0.011) 0.062 (0.010) 0.071 (0.010) 0.116 (0.011)
γ 0.055 (0.024) 0.103 (0.018)
β 0.856 (0.012) 0.867 (0.010) 0.850 (0.011) 0.860 (0.011)
δ 0.076 (0.026) 0.111 (0.023)
α+ β + .5(γ + δ) 0.981 (0.006) 0.981 (0.005) 0.977 (0.006) 0.976 (0.005)

vol. forecast
√

252hT+1 (%) 15.05 (0.62) 13.95 (0.27) 15.53 (0.718) 13.27 (0.216)
1% VaR ($) 23.28 (0.75) 22.24 (0.48) 24.10 (0.92) 21.76 (0.39)
Correl (rt−1, log(ht/ht−1)) -0.513 -0.434 -0.426 -0.115
MBIC at mean 3411.55 3412.85 3416.44 3437.01
MBIC at mode 3369.41 3375.40 3380.10 3406.52

Notes: Data for the S&P500 index for the period 01/04/2001-12/31/2012. All coefficients are re-

ported at posterior means and standard deviations are given in brackets. All parameters are statisti-

cally significant, i.e. the 95% Highest Posterior Density Intervals (not reported to save space) do not

include zero. I derive posterior distributions of 1 day out of sample volatility forecast (
√

252hT+1)

and of Value at Risk (VaR) using MCMC draws of parameters. The 1% VaR is constructed for $1000

portfolio for 1 day out of sample forecast and is corrected for fat tails using historical simulations.

MBIC is the Modified Bayesian Information Criterion.

Table 4: Estimation results for DCC-GJR-GARCH model

BAC CIT JPM
ω12 0.072 (0.029) 0.084 (0.034) 0.113 (0.051)
α 0.059 (0.012) 0.047 (0.012) 0.025 (0.008)
β 0.858 (0.042) 0.849 (0.050) 0.856 (0.057)
ωii = 1− α− β 0.083 (0.033) 0.104 (0.042) 0.119 (0.053)
Correlation forecast 0.652 (0.009) 0.680 (0.021) 0.750 (0.017)
Beta forecast 1.556 (0.042) 1.397 (0.061) 1.147 (0.044)
MES 0.042 (0.0004) 0.036 (0.001) 0.028 (0.001)
LRMES 0.548 (0.010) 0.510 (0.015) 0.443 (0.012)
SRISK ×1010 10.582 (0.112) 8.159 (0.163) 8.678 (0.190)

Notes: Data for BAC, CIT, JPM and S&P500 index for the period 01/04/2001-12/31/2012. All coef-

ficients, forecasts of correlation, beta, MES, LRMES and SRISK are reported at posterior means and

standard deviations are given in brackets. MBIC is the Modified Bayesian Information Criterion.
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Figure 1: Returns: BAC, CIT, JPM, SPX
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Figure 2: Annualized Volatility (GJR-GARCH): BAC,CIT, JPM, SPX

Figure 3: Dynamic correlation with the market (DCC-GJR-GARCH): BAC,CIT, JPM

17



Figure 4: 100 day rolling correlation with the market : BAC,CIT, JPM

Figure 5: Leverage: BAC, CIT, JPM
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Figure 6: Marginal Expected Shortfall (MES) based on TARCH model: BAC,CIT, JPM

Figure 7: Long Run Marginal Expected Shortfall (LRMES) based on TARCH model: BAC,CIT,
JPM
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Figure 8: SRISK based on GTARCH model: BAC,CIT, JPM

Figure 9: PDFs of one day forecasts of volatilty using TARCH model: BAC,C,JPM (2012/12/31)

Figure 10: PDFs of Marginal Expected Shortfall in the period of low volatility: BAC,CIT, JPM
(2012/12/31)
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Figure 11: PDFs of Long Run Marginal Expected Shortfall in the period of low volatility:
BAC,C,JPM (2012/12/31)

Figure 12: PDFs of SRISK in the period of low volatility: BAC,C,JPM (2012/12/31)

Figure 13: PDFs of one day forecasts of volatilty using TARCH model: BAC,CIT, JPM
(2008/08/29)
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Figure 14: PDFs of Marginal Expected Shortfall in the period of high volatility: BAC,C,JPM
(2008/08/29 )

Figure 15: PDFs of SRISK in the period of high volatility: BAC,CIT, JPM (2008/08/29)

Figure 16: PDFs of one day forecasts of volatilty using TARCH model: BAC,CIT, JPM
(2009/03/31)
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Figure 17: PDFs of Marginal Expected Shortfall in the period of high volatility: BAC,CIT, JPM
(2009/03/31 )

Figure 18: PDFs of SRISK in the period of high volatility: BAC,C,JPM (2009/03/31)
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