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Abstract

I propose Bayesian approach for estimation of systemic risks measures. The paper
illustrates Markov Chain Monte Carlo (MCMC) estimation of MES (marginal expected
shortfall), LRMES (long run marginal expected shortfall) and SRISK (the expected
capital shortage of a firm conditional on a substantial market decline). The analysis
is performed using the dynamic conditional correlations (DCC) model with asymmet-
ric GJR-GARCH volatility and a generalized threshold conditional volatility model
(GTARCH) that allows ARCH and GARCH parameters to change when returns inno-
vations are negative. Using equity returns and credit default swap (CDS) spreads of
large US banks I find that the proposed more general asymmetric volatility model has
better fit, higher persistence of negative news and higher degree of risk aversion. Over-
all, I find that after accounting for uncertainty of parameters systemic risk distributions
for large financial institutions could be highly overlapping, especially, during periods of
moderate and high volatility. The SRISK measure is then extended to include equity
illiquidity component. I advocate usage of distributions rather than point estimates of
systemic risk measures by researchers and regulators.

KEY WORDS: Markov Chain Monte Carlo; Systemic Risk; Generalized Threshold Con-
ditional Volatility; Dynamic Conditional Correlation; Illiquidity.

1 Introduction

After the 2007-2009 financial crisis the topic of systemic risk (or ”too big to fail”)
became increasingly important in academic research and public policy discussion. Many
papers introduced various systemic risk measures for large financial institutions based on
publicly available market data as well as non-public firm specific data that can be accessed by
regulators. Some measures uses daily and intra-daily equity and derivates prices, quarterly
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financial statements of publicly traded companies and macroeconomics data. In addition to
that regulators use detailed financial positions of interconnectedness and complexity of the
firm among other metrics. Bisias et al (2012), Acharya et al (2014), Arnold et al (2012),
Brunnermeier and Oehmke (2013), and Benoit et al (2017) provide extensive reviews of
various macroprudential and microprudential tests. In this paper I only consider the market
based measures of systemic risks.

Acharya et al (2017) showed that if a financial firm is large and highly interconnected
failure of such firm causes considerable strain to the rest of the financial sector and a nega-
tive externality on the rest of the economy. They propose systemic expected shortfall (SES)
measure conditional on the system being undercapitalized. SES depends on the marginal
expected shortfall (MES) and leverage of the firm. Brownlees and Engle (2017) generalize
the measurement of SES by introducing dynamic conditional correlations (DCC) model
with asymmetric GJR-GARCH volatility. They introduce the LRMES (long run marginal
expected shortfall) and SRISK (the expected capital shortage of a firm conditional on a
substantial market decline). SRISK is essentially a type of stress test that uses only market
data and measures capital shortfall of a firm in case of a financial crisis with substantial
market decline. SRISK depends on leverage, size, volatility and the conditional correlation
of the firm with the market. The rankings for LRMES and SRISK for large global financial
institutions introduced in this literature are weekly reported by the VLAB Volatility Insti-
tute1. However, this measures are reported without uncertainty around estimates and thus
one cannot judge if the differences in rankings of large financial institutions are statistically
significant. Brownlees and Engle (2017) introduced confidence intervals for the LRMES
based on quantiles of 1-month simulated returns when the market is in distress. Their
simulation procedure uses bootstrapped standardized residuals obtained from the point es-
timates of parameters without estimation errors. Thus parameter estimation errors are not
incorporated in these intervals.2 Since the simulation procedure is computationally inten-
sive they also show how to estimate a simple approximation of LRMES without simulation.
The LRMES and SRISK approximate measures are point estimates without uncertainty
around them. Moreover, Brownlees and Engle (2017) do not analyze if individual financial
institutions are actually different in terms of their systemic risks measures.

Many other popular market based measures were introduced in literature such as Co-
VaR (Adrian and Brunnrmeier (2016)), CoVaR with multivariate GARCH (Girardi and
Ergun(2013)), systemic risk index CAITFIN (Allen et. al (2012), probability of default
measures based on credit default swaps (CDS) (Huang et. al 2011). These studies looked
at contribution of a firm in distress to overall risk of the financial system and also do not
show how to measure and incorporate uncertainty and confidence intervals for systemic risk
measures.

CDS spreads are widely used to assess default risks of financial institutions. The liter-
ature analyzing risks implied by CDS is growing. For example, Hull et. al (2004) among
others studied the relation between CDS spreads, bond yield spreads and credit rating

1See http://vlab.stern.nyu.edu
2Appendix in Brownlees and Engle (2017) shows the simulation procedure. For comparison I also perform

the same simulation procedure for 1 month and report results in Table 10.
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announcements. Carr and Wu (2011) show the relation between CDS spreads and out-of-
the-money American put options. The CDS premiums change dramatically over time and
similar to equities exhibits volatility clustering. Oh and Patton (2017) study the systemic
risk using dynamic copula model of CDS spreads where they use asymmetric GJR-GARCH
volatility model with ”bad news” resulting from positive residual. For modeling equity
volatility the GJR-GARCH model is widely used with negative residual indicating ”bad
news”.

If the systemic risk scores could be measured reasonably accurately it could benefit regu-
lators when they set capital surcharges on financial institutions that have high contribution
to the system-wide risk. The Financial Stability Board (FSB) publishes list of global sys-
temically important banks (G-SIBs) allocated to buckets corresponding to required levels
of additional capital buffers.3 Their scoring methodology developed by the Basel Com-
mittee on Banking Supervision (BCBS) is based on equal weighted index of 5 indicators
including size, interconnectedness, substitutability, complexity and cross-jurisdictional ac-
tivity. The Office of Financial research (OFR) as well publishes brief series where they
assess the relative riskiness of the G-SIBs by assigning relative scores on a similar number
of attributes. Such scoring methods do not incorporate uncertainty of the estimated com-
ponents and may result in inaccurate grouping of banks into buckets and corresponding
levels of required capital buffers.4

In order to account for uncertainty in parameter estimation and provide distributions
and confidence intervals for systemic risk measures the present paper shows how to estimate
MES, LRMES and SRISK using Bayesian Markov Chain Monte Carlo (MCMC) algorithms.5

In this paper I develop MCMC algorithms for estimation of asymmetric volatility models,
correlation and systemic risk measures. The advantage of MCMC algorithms is their natural
ability to generate posterior predictive densities for variables of interest, such as volatility,
correlation and tail risks. I use Metropolis-Hastings steps with random walk draws. The
algorithm is based on MCMC for threshold time series models in Goldman and Agbeyegbe
(2007).

First, I introduce a generalized threshold conditional volatility model (GTARCH) and
compare it to traditional asymmetric models of volatility. Since introduction of the gener-
alized autoregressive conditional heteroscedasticity (GARCH) model there have been many
extensions of GARCH models that resulted in better statistical fit and forecasts. For exam-
ple, GJR-GARCH (Glosten, Jagannathan, & Runkle (1993)) is one of well-known extensions
of GARCH models with an asymmetric term which captures the effect of negative shocks
in equity prices on volatility commonly referred to as a ”leverage” effect. The widely used
asymmetric GJR-GARCH model (also known as TARCH) has a problem that the uncon-
strained estimated coefficient of α often has a negative value for equity indices. The typical
solution to this problem is constrained estimation with positivity requirement making coef-

3http://www.fsb.org/wp-content/uploads/2016-list-of-global-systemically-important-banks-G-SIBs.pdf
4There are 5 buckets used by Basel methodology with the highest level of additional capital surcharge

equal to 3.5% and the lowest equal to 1%.
5MCMC methods could be used for other measures as well. This paper focuses on the above three

measures and volatility modeling.
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ficient alpha close to zero. In the proposed more flexible GTARCH model both coefficients,
ARCH (α) and GARCH (β), are allowed to change to reflect the asymmetry of volatility
due to negative shocks. The GTARCH model better captures asymmetry in both ARCH
and GARCH terms and allows for different levels of persistence in the regimes of positive
and negative returns. In particular, GJR-GARCH model is a subset of this model with
asymmetry only in ARCH; another subset is a simple GARCH model with no asymmetry.
Other model introduced in the paper is the GTARCH0 model that allows for asymmetry
only in GARCH.

Using MCMC method I estimate GTARCH family models for the logarithmic returns
of equities and the log-differences of CDS spreads. For the analysis of equities I used data
for Bank of America (BAC), JP Morgan Chase (JPM), Citi group (CIT) and S&P 500
between 2001-2012. I find that the most general GTARCH model fits better, shows higher
persistence for negative news and lower persistence for positive news. The GTARCH model
also shows higher risk aversion compared to other asymmetric GARCH models. Moreover,
the suggested more flexible GTARCH model eliminates negative α bias that is typically
found in the GJR-GARCH model for equity indices.6 As for the CDS data of BAC and
JPM I find that the GATRCH0 model has the best fit.

Second, I develop MCMC algorithm for estimation of the DCC (dynamic conditional
correlations model) and find posterior distributions of correlation, beta, MES, LRMES and
SRISK. In order to estimate the model Brownlees and Engle (2017) used two stage Maximum
Likelihood estimation. In the first step they estimated GJR-GARCH volatility models for
market and firm returns, while in the second stage they used standardized residuals to
estimate the parameters of the dynamic conditional correlation (DCC) model. In order to
simplify and speed up MCMC algorithms I perform estimation in similar two-steps, first
estimating volatilities and then correlations.

It turns out that in a period of low volatility (2012/12/31) the SRISK measures are
statistically different with 95% Highest Posterior Density Intervals (HPDIs) not overlapping
for BAC, CIT and JPM, thus, they can be allocated in three separate buckets. Similar
result holds for MES but not for LRMES. Since distributions of LRMES overlap for two
banks the difference in their SRISK is driven by the difference in leverage. During periods
of moderate (2008/08/29) or high volatility (2009/03/31) the 95% HPDIs of SRISK and
other are measures are intersecting. SRISK ranks are mostly sensitive to a combination of
leverage and size since often LRMES are not ranked differently with 95% highest posterior
density intervals intersecting in various periods including low volatility period. Thus SRISK
rankings of banks are justified distinguishing firms in terms of severity of the systemic risks
they impose on the system when the leverage and size of the companies are substantially
different.

Finally, I performed sensitivity analysis using equity illiquidity adjustment and simula-
tion method for LRMES. The results are similar with illiquidity adjustment without simu-

6For S&P500 GJR-GARCH model unconstrained estimation results in a statistically significant negative
α. For the GTARCH model α is not statistically significant.
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lations of LRMES. The standard errors increase about ten times using simulation method
and as a result the rankings become even less distinguishable.

Overall, this paper offers the following contributions. First, I propose a GTARCH
model and compare its performance with subset volatility models commonly used in the
literature for equities and log changes of CDS spreads. I show Bayesian MCMC estimation
of GTARCH family models including popular GJR-GARCH and then extend it to Dynamic
Conditional Correlation (DCC) model. Second, the equity volatility forecasts combined with
correlation with the market are used for the measurement of systemic risks, MES, LRMES
and SRISK, in a fashion similar to Acharya et al (2017) and Brownlees and Engle (2017)
but incorporating uncertainty for risk measures.

The remainder of the paper is organized as follows. Section 2 presents the generalized
threshold conditional volatility model (GTARCH). In Section 3 I review measures of sys-
temic risks. Section 4 explains estimation of the GTARCH-DCC model, while Appendix
provides details of the MCMC algorithms. Section 5 presents data analysis for Bank of
America (BAC), JP Morgan Chase (JPM), Citi group (CIT) and S&P 500. Section 6 shows
distribution of systemic risk measures in three cases for the periods of high, medium and
low volatility. Section 7 presents conclusion and further work.

2 Generalized Threshold GARCH (GTARCH) model

A popular threshold ARCH or GJR-GARCH model (Glosten, Jagannathan, & Runkle
(1993)) is an asymmetric volatility model which captures the impact of a negative news
in equity returns also referred to a ”leverage” effect. The model captures risk-aversion of
investors with next day volatility being higher as a result of a negative news compared to
the same positive news.

Consider a time series of logarithmic returns rt with constant mean µ and the GJR-
GARCH conditional variance σ2t given by

rt = µ+ εt (1)

σ2t = ω + αε2t−1 + γε2t−1I(εt−1<0) + βσ2t−1

where εt is Gaussian (or other distribution) random variable, I(εt−1 < 0) is a dummy
variable equal to one when previous day innovation εt−1 is negative; α and β are ARCH
and GARCH parameters, and γ is an asymmetric term capturing risk aversion.

Alternatively, this model can be written as a two-regime model for the ARCH term:

σ2t = ω + α1ε
2
t−1I(εt−1<0) + α2ε

2
t−1I(εt−1≥0) + βσ2t−1 (2)

The properties of risk-aversion for equity returns imply that α1 ≥ α2 or γ = α1 − α2 ≥ 0.

The widely used asymmetric GJR-GARCH model has a problem that the unconstrained
estimated coefficient of positive news α = α2 often has a meaningless negative value for
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equity indices. A constrained optimization imposing positivity on all variance parameters
results in α slightly positive and very close to zero.

The Generalized Threshold GARCH (GTARCH) model that I introduce allows both
ARCH and GARCH terms to reflect asymmetry of volatility due to negative news.

σ2t = ω + αε2t + γε2t I(εt−1 < 0) + βσ2t−1 + δσ2t−1I(εt−1 < 0), (3)

where added term δ reflects degree of asymmetric response in the GARCH term. In this
model both parameters γ and δ create the asymmetric response of volatility to negative
shocks.

The GTARCH model can be also written as a two-regime threshold model:

σ2t = ω + α1ε
2
t−1I(εt−1<0) + α2ε

2
t−1I(εt−1≥0) + β1σ

2
t−1I(εt−1<0) + β2σ

2
t−1I(εt−1≥0) (4)

The more general GTARCH model due to its flexibility of parameters shows different
dynamics for GARCH parameters when the news is negative and allows for higher persis-
tence in the regime of negative news. This in turn takes away the negative bias from α2

which measures the reaction to the positive news. At the same time estimation of extra
parameter β2 is a straightforward extension as shown in Section 4.

Data estimation in Section 5 shows that allowing both ARCH and GARCH parameters
to change with negative news results in better statistical fit. Moreover, the GTARCH model
not only better captures the asymmetric effect but also shows higher persistence for negative
returns compared to its subset GJR-GARCH model. In addition the coefficients of µ and
ω could be allowed to change with regime to make the model even more flexible.7

In this paper I consider the following GTARCH family models with constraints imposed
on GTARCH parameters:

GTARCH Family Models Constraint

GTARCH None
GJR-GARCH (TARCH) β1 = β2
GTARCH0 α1 = α2

GARCH α1 = α2, β1 = β2

The GTARCH includes a family of models with and without asymmetry. As a special
case it allows for GJR-GARCH, GTARCH0 and GARCH. For example, in a model that I
call GTARCH0 the asymmetric effect is only in the GARCH term.

2.1 Stationarity of the GTARCH Model

The weak stationarity condition in the GARCH model and the long run unconditional
variance σ2 are given by the following equations:

7However, interpretation of risk aversion is less intuitive. I estimated such models for sensitivity and
results are available on request.

6



α+ β < 1, σ2 =
ω

1− α− β

For the GTARCH model let θ = E(I(εt < 0)) which is expected percentage of observa-
tions with negative news that should be in theory equal to 1/2. Then the weak stationarity
condition and the unconditional variance are given by

(α1 +β1)θ+(α2 +β2)(1−θ) = (α1 +α2 +β1 +β2)/2 < 1, σ2 =
ω

1− (α1 + α2 + β1 + β2)/2

For actual data applications stationarity conditions are typically incorporated as estimation
constraints.

3 Systemic Risk Measures

Brownlees and Engle (2017) introduced several ways to measure systemic risks with and
without simulations. They use the Dynamic Conditional Correlations (DCC) model of Engle
(2002,2009) for the logarithmic returns of the firm rt and the market rm,t. The conditional
variances are modelled using the GJR-GARCH model. Compared to their model I add a
constant term µ for each asset as well as GTARCH family models introduced in Section 2.

The returns can be written as

rmt = µm + σmtεmt (5)

rt = µi + σtρtεmt + σt

√
1− ρ2t εt

where εmt, εt are independent and identically distributed variables with zero means and unit
variances, σt and σmt are conditional standard deviations of the firm return and the market
return correspondingly, and ρt is conditional correlation between the firm and the market.

This model can be also written as the dynamic conditional beta model with βt = ρt
σt
σmt

and tail dependence on correlation of firm returns and the market.

The first considered systemic risk measure is the daily marginal expected shortfall (MES)
which is the conditional expectation of a daily return of a financial institution given that the
market return falls below threshold level C. Acharya et al (2017) considered the threshold
equal to the 5% quantile for the market returns. In the original version of VLAB it was
assumed that threshold C = −2% and I use the same estimate in the analysis below.8 Other
values for C using various quantiles could be explored.

MESt−1 = Et−1(rt|rmt < C) (6)

= σtρtEt−1(εmt|εmt ≤ C/σmt) + σt

√
1− ρ2tEt−1(εt|εmt ≤ C/σmt)

8Current version of VLAB lists only LRMES threshold but not MES.
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The computation of the expected shortfall is perfomed using nonparametric estimates
of Scaillet (2005):

Et−1(emt|emt ≤ α) =

∑t−1
i=1 emiΦh(α−emi

h )∑t−1
i=1 Φh(α−emi

h )

where α = C/σmt, Φh(t) =
∫ t/h
−∞ φ(u)du, φ(u) is a standard normal probability dis-

tribution function used as kernel, and h = T−1/5 is the bandwidth parameter. The non-
paramteric method above allows more smooth estimate of MES since the number of points
in the tail for computation of expected shortfall is limitted.

The second measure is the long run marginal expected shortfall LRMES based on the
expectation of the cumulative h month firm return conditioned on the event that the market
falls by more than d% in six months. VLAB uses h = 6 months and allows choice of d which
is by default equal to 40% for the US financial firms. Brownlees and Engle (2017) set h = 1
month with threshold d = 10%.9

First, I find LRMES meausure without simulation using the approximation below fol-
lowing the methodology in VLAB.10 The crisis threshold for the S&P 500 Composite Index
decline is set to d = 40% which is consistent with analysis with simulations in VLAB.

LRMESt = 1− exp(ln(1− d) ∗ βt) (7)

Second, a simulation procedure is used to obtain LRMES using bootstrapped standard-
ized residuals from equation (5) where I obtain forecasts of variances and correlations from
the posterior mean estimates of parameters while in Brownlees and Engle (20017) they
are point Maximum Likelihood estimates. As in Brownlees and Engle (2017) LRMES is
computed as empirical average of firm cumulative h = 1 month returns conditional on the
market fall more than d = 10%.

Finally, LRMES is combined with firm equity and debt in order to compute the capital
shortfall of the firm based on the potential capital loss in h months:

SRISKt = max{0; kDt − (1− k)(1− LRMESt)Et} (8)

where Dt is the book value of Debt at time t, Et is the market value of equity at time t and
k = 8% is the prudential capital ratio of the US banks.11 It is assumed that the capital loss
happens only due to the loss in the market capitalization LRMES ∗ Et.

The VLAB rankings for SRISK and components are presented in Table 1. Bank of
America (BAC), Citigroup (CIT) and JP Morgan Chase (JPM) are ranked as the top three
highest systemically important US financial firms for the period August 29, 2008 - December
31, 2012. In terms of SRISK % the three banks above account for 40-50% of the whole list of

9For sensitivity threshold equal to 20% is also considered and high correlation in resulting SRISK
meausures for large firms is found.

10I use VLAB to compare estimates of SRISK in Section 5.
11Brownlees and Engle (2017) for sensitivity also set k = 10% and found high correlation in resulting

SRISK measures for large firms.
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the US financial institutions. The first panel in Table 1 shows fourteen highest systemically
important financial institutions using SRISK about two weeks before the collapse of Lehman
Brothers. Interestingly, Lehman Brothers is ranked eleventh. However, using LRMES it
would be ranked third on the list following Fannie Mae and Freddie Mac. Below I analyze
properties of MES, LRMES and SRISK as they may potentially give different rankings.

Table 1 here

In order to check for robustness of SRISK I construct a modified SRISK adjusted for eq-
uity illiquidity. My extension is based on liquidity adjusted Value at Risk (VaR) following
Bangia et al. (1999) among others. I compute the relative spread based on bid-ask closing
prices and mid price as S = ASK−BID

Mid . Then returns are adjusted by spread (r∗ = r−S/2)
assuming that half of the spread accounts for transaction costs. Here the return risk and
liquidity risk are modeled jointly. Next, I use modified lower equity returns r∗ for the
computation of systemic risk measures. Since in SRISK debt level is assumed to be not
changing for h months ahead fI only perform illiquidity adjustment for equity.

4 Estimation of the GTARCH-DCC Model

I use Bayesian Markov Chain Monte Carlo (MCMC) algorithms to estimate posterior
distributions of parameters of the GTARCH and DCC model. MCMC are especially useful
when the dimension of parameters is high, since the problems of multiple maxima or of ini-
tial starting values are avoided. A simple intuitive explanation of the Metropolis-Hastings
algorithm is given in Chib and Greenberg (1995). Goldman and Agbeyegbe (2007) devel-
oped MCMC algorithm for the estimation of a general class of multiple threshold time series
of the U.S. short term interest rates. Their model nests the threshold autoregressive model
(TAR or SETAR), ARMA, GARCH, and CKLS models. The algorithm allows to estimate
jointly parameters of all regimes as well as threshold parameters. Goldman, Nam, Tsurumi
and Wang (2013) extended the MCMC algorithm for the fractional integration parame-
ter and estimated threshold fractionally integrated (TARFIMA) for realized volatilities of
intraday ETF and stock returns.

In this paper I use Metropolis-Hastings steps with random walk draws for the GTARCH
model in equation (4) based on MCMC for ARMA-GARCH models of Goldman and Tsu-
rumi (2005) and threshold models of Goldman and Agbeyegbe (2007). The GTARCH model
is a special case when there are two regimes for the GARCH model determined by εt−1 with
threshold equal to 0. In the simpler and computationally faster algorithm I estimate the
regression parameter and GARCH parameters for two regimes: (εt−1 < 0 and εt−1 ≥ 0).

After the parameters of the GTARCH model as well as all nested models including GJR-
GARCH, GTARCH0 and GARCH are estimated, I find conditional variances over time and

standardized residuals given by zi,t =
ri,t − µi
σit

and zm,t =
rm,t − µm

σmt
, where ri,t and rm,t

are daily logarithmic returns of firm i and the market correspondingly.
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Next, I estimate the parameters αCi and βCi of the dynamic correlation ρi,t for the
standardized residuals using the DCC model of Engle (2002):

qim,t = ωim(1− αCi − βCi) + αCizi,tzm,t + βCiqim,t−1 (9)

ρi,t =
qim,t√

qii,t qmm,t

where ωim is the unconditional covariance of zi,t and zm,t and

Qim,t =

[
qii,t qim,t
qim,t qmm,t

]
is a positive-definite pseudo-correlation matrix that needs to be re-normalized to get cor-
relation at each point. Tse and Tsui (2002) proposed an alternative DCC model for the
correlation with smoothing that typically results in less volatile correlation. That model
involves choice of smoothing parameter and does not need normalization of the Q.

In order to estimate the DCC model in equation (9) Brownlees and Engle (2017) used
two stage Maximum Likelihood estimation. In the first step they estimated GJR-GARCH
volatility models for market and firm returns, while in the second stage they used standard-
ized residuals to estimate the parameters of the dynamic conditional correlation (DCC)
model. In order to simplify and speed up MCMC algorithms I perform estimation in sim-
ilar two-steps, first estimating volatilities and then correlations. Details of the MCMC
algorithms and model selection criteria are given in Appendix.

5 Data Analysis

In this section I estimate volatilities, correlations and systemic risks for Bank of America
(BAC), Citigroup (CIT) and JP Morgan Chase (JPM) ranked by VLAB as the top three
systemically important US financial firms for the period August 29, 2008 - December 31,
2012 shown in Table 1.12 I use the equity and debt data are for the period 1/04/2001-
12/31/2012 similar to Brownlees and Engle (2017) whose sample ends in 2012. I use market
data on stock prices, market capitalization, book value of debt and also credit default swap
(CDS) spreads. The data for equity prices, returns and market capitalization are from
CRSP. The book value of debt is from COMPUSTAT. The CDS data for five year secured
bonds are from Bloomberg.

The equity returns daily data are presented in Figure 1. All equity returns exhibit
similar volatility clustering between 2008-2009 and in August 2011. Table 2 shows the
summary statistics where all the series have large kurtosis over 10, some skewness and
small autocorrelation.13

Figure 1 and Table 2 here

12Since the same methodology can be applied for the rest of the financial sector I focus just on three major
banks for illustration of estimation and results of capital shortfall under market stress.

13I did not use the autoregressive term in the return equation as it was never significant.
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Table 3 shows the results of MCMC estimation of GTARCH family volatility models
for SPX. I estimate GTARCH with all parameters (α1, α2, β1, β2), GJR-GARCH (β1 = β2),
GTARCH0 (α1 = α2) and GARCH ( α1 = α2, β1 = β2). For each model the posterior mean
and standard deviation of parameters are reported. In the Bayesian approach it is common
to use the highest posterior density intervals (HPDI) for hypothesis testing. I report 95%
HPDI for the one day forecast of volatility which can be compared for all models and discuss
confidence intervals for GARCH parameters below.

First, I estimated GTARCH models without constraints on positivity of α and the 95%
HPDI for α2 is [-0.026, 0.005]; thus α2 is not statistically different from zero in the GTARCH
model. However, when I estimate the GJR-GARCH model without positivity constraint
on α it results in statistically significant negative posterior mean of α2 = −0.021 with 95%
HPDI equal to [-0.034,-0.007]. The interpretation of negative α2 that positive news reduces
volatility in the next period is unintuitive. The reason for negative α2 is that the GJR-
GARCH model is not flexible enough to allow change in regime and persistence of GARCH
parameters other than in α. This creates a bias in α that captures change in regime for
other parameters.14 Since GARCH parameters need to be positive I impose constraints in
MCMC procedure which results in estimated α2 being positive but very close to zero in
these models.

The most general GTARCH volatility model is selected using minimum of the MBIC
information criterion15 either evaluated at the posterior mean or mode of the parameters.
All models satisfy stationarity condition with overall persistence = (α1+α2+β1+β2)/2 < 1.
Clearly in the GTARCH model both α and β change with regime showing the asymmetric
effect present in both ARCH and GARCH terms and higher persistence in the regime of
negative news. For example, the 95% HPDI for β1 is [0.945, 1.001] and for β2 is [0.810,
0.857]. This shows different β for two regimes as the 95% intervals do not cross. Similarly α
is different for two regimes with 95% HPDI for α1 equal to [0.134, 0.188] and for α2 [0.000,
0.012]. The GJR-GARCH model that allows only the coefficient of α to change with regime
has the 95% HPDIs equal to [0.152, 0.222] and [0.000,0.008] for α1 and α2 correspondingly.

Table 3 also shows the degree of risk aversion in each model measured by the correlation
between returns rt−1 and log difference of fitted conditional variance log(σ2t /σ

2
t−1) for each

model. The more negative correlation implies higher degree of risk aversion because of
asymmetrically higher volatility for negative returns. For comparison the log difference in
VIX index has correlation with the S&P 500 return of about -0.7. Table 3 shows that
the highest degree of risk aversion is captured by the GTARCH model and the smallest
correlation is for the symmetrical GARCH model.

Table 3 here

14For sensitivity analysis I estimated a more general GTARCH model. In addition to α and β I also
allowed the constant terms µ and ω to change with regime for negative returns. The latter model resulted
in very small positive α2; without imposing positivity constraint the 95% HPDI is [0.000, 0.006]. So α2 is
indeed close to zero.

15MBIC is the Modified Bayesian Information Criterion explained in the Appendix.
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The dynamic volatilities resulting from GTARCH family models at posterior means of
parameters are plotted in Figure 2. The plot of annualized volatility forecast

√
252σt for

SPX shows the highest level during the financial crisis and the second peak in August 2011.
All four models give similar dynamics but in order to compare volatility estimates at any
particular time I plot kernel densities of the volatility distributions on Figures 3-5 rather
than only comparing posterior means.

Figure 2 here

The volatility distributions estimated at the end of the sample show some overlap.
Figure 3A shows posterior distributions of one-day SPX volatility forecasts on 2012/12/31
when volatility level was low. The 95% HPDIs presented earlier in Table 3 show that the
one day forecasts for GTARCH and GTARCH0 overlap. Also GJR-GARCH and GARCH
forecasts overlap. In this case GTARCH model produces higher forecast of volatility than
GJR-GARCH (TARCH) and GARCH models.

Figure 3B shows forecasts at a time of moderate level of volatility on 2008/08/29 before
Lehman’s collapse. Again distributions for GTARCH and GTARCH0 overlap and distribu-
tions for GJR-GARCH and GARCH also intersect. At this point GTARCH model produces
lower forecast of volatility than GJR-GARCH and GARCH models.

Figure 3C presents similar distributions at a time of high volatility on 2009/03/31. At
this point GTARCH and GJR-GARCH distributions are very close to each other producing
similar forecasts. GARCH and GTARCH0 as well produce similar forecasts which are about
700 basis points higher than GTARCH and GJR-GARCH. Interestingly, the GTARCH
model is somewhat less procyclical than GJR-GARCH (TARCH) and GARCH models: in
Figures 3A-3C compared to other models GTARCH forecasts higher volatility when markets
are calm and lower volatility when markets are in distress.

Figure 3 here

The dynamics of the GJR-GARCH volatility estimated at posterior means of param-
eters for three banks and SP500 index are presented in Figure 4. Figure 4A shows that
volatility increased for all banks and the SPX following Lehman Brothers’ bankruptcy filing
on 9/15/2008. Specific events for other banks that lead to higher volatility include: JPM’s
acquisition of Bear Sterns backed by Government support on 3/16/2008; Bank of Amer-
ica’s acquisition of Meryll Lynch on 9/15/2008. Major SCAP infusions were received by
Bank of America and Citigroup on 10/13/08. CIT volatility is the highest among the group
reaching the peak of over 350% in the midst of the 2008-2009 crisis. Before the financial
crisis JPM had higher level of volatility than BAC, while during the crisis and afterwards
BAC volatility level exceeded JPM. Not surprisingly the SPX has lower equity volatility
than banks. For robustness check instead of showing very similar graphs over time with
GTARCH and GARCH models I plotted a simple HIGH-LOW daily estimate of volatility
for JPM and BAC in Figure 4B. High and low daily prices are from CRSP. This simple
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alternative non-parametric measure (HIGH-LOW) captures similar patterns in volatility as
the GJR-GARCH model.

Figure 4 here

The posterior predictive distributions of annualized volatility forecast
√

252σT+1 using
the GJR-GARCH model for three banks are shown in Figure 5. Panel A presents case 1 of
low volatility (T=2012/12/31), panel B is for case 2 of medium volatility (T=2008/08/29)
and panel C is for case 3 of high volatility (T=2009/3/31). In case 1 of low volatility the
posterior distributions are distinct and volatility forecasts can be ranked from the highest
to the lowest: 1. BAC, 2. CIT, 3. JPM. It is important that banks can be distinguished as
volatility forecast is an essential part of MES which I consider in the next section. However,
in the period of moderate volatility (2008/08/29) the forecasts distributions highly overlap
and volatilities can’t be ranked. Finally for 2009/03/31 BAC again can be ranked with
the highest volatility followed by CIT and JPM. Table 7 column 2 shows 95 % HPDIs
for volatility and confirms that while forecasts are statistically different for case 1 (low
volatility) and case 3 (high volatility) they highly overlap in case 2 (medium volatility).

Figure 5 here

Figure 6A shows leverage ratios for three banks. The quasi market value of leverage is
constructed using market value of equity and book value of debt: LV G = (Dt + Et)/Et,
where daily data for market capitalization Et is from CRSP and quarterly book value of
debt is from COMPUSTAT. Before the financial crisis the leverage of JPM exceeded that of
BAC and CIT. Starting from 2008 CIT leverage skyrocketed, followed by BAC. JPM had
the least leverage among three largest banks during the crisis.

Figure 6 also shows the CDS spreads and log-differences of CDS spreads. The CDS
weekly and daily spreads on the 5 year secured bonds were obtained from Bloomberg. I
present weekly data for spreads in Figure 6B and log difference in spreads in Figure 6C.
The CDS spreads for BAC, CIT and JPM seem to move together to some extent. Since the
crisis CDS spreads were the highest for CIT, followed by BAC and by JPM. As with equity
volatility the CDS spreads were higher for JPM before the financial crisis and lower since
the crisis. The log-differences of CDS spreads exhibit volatility clustering similar to equity
returns.

I consider the GTARCH models for the log-differences of CDS spreads. Unlike the
equity returns the bad news in CDS market is when the spreads increase and one might
expect higher persistence in regime 2. In Table 4 I present the results of fitting GTARCH
family volatility models for log-differences in CDS spreads of JPM. Even though the CDS
spreads typically have significant positive skewness the log-differences of CDS spreads do
not show considerable skewness as can be seen from the summary statistics in Table 2.
AR(1) coefficients are small as well. Interestingly the GTARCH0 model is selected among
others using MBIC information criterion. Only asymmetry in the GARCH term (rather
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than the ARCH term in the traditional GJR-GARCH model) seems to be important for
CDS volatility. CDS volatility was modelled using GJR-GARCH model by Oh and Patton
(2017) . The proposed asymmetric GTARCH models may be also useful for modeling value
at risk (VaR) for CDS. With Dodd Frank regulation on mandatory clearing setting initial
margins using VaR models is a common practice where asymmetric volatility models can
be applied.

Figure 6 and Table 4 here

Once the volatility models were estimated I find standardized residuals at posterior
means of parameters and estimate the DCC model as explained in Section 4. The resulting
dynamic conditional correlation of firms with the market using DCC-GJR-GARCH model
is given in Figure 7A. For comparison I also present 100-day rolling correlations in Figure
6B. Both graphs show changing correlation over time with averages between 0.70-0.75;
distributions of correlations are negatively skewed with longer left tail.16

Figure 7C shows the dynamics of beta over time with average between 1.35-1.54. The
distribution of betas is highly skewed to the right with the maximum levels reaching 3.6-
6.7. Interestingly, the beta for JPM reached higher maximum of 6.7 compared to BAC and
CIT during 2008-2009, while JPM volatility was the lowest among three banks. Beta has
essential contribution to LRMES with higher beta resulting in higher LRMES.

Figure 7 here

The posterior means and standard deviations of the correlation parameters in the DCC-
GJR-GARCH model are given in Table 5.17 I also present one day forecasts of correlation,
beta, MES and six month forecasts of LRMES and SRISK. This forecasts are at the end of
the sample (12/31/2012) when volatility was low. BAC has higher posterior mean of beta,
MES, LRMES and SRISK than other two banks. The full posterior distributions of these
risk measures are presented in Figures 9-11 and will be discussed in Section 6.

Table 6 presents various risk estimates of GTARCH family models for JPM. At the
end of 2012 the Beta ranged between 1.00-1.15, MES 2.8%-3.0%, LRMES 40%-45% and
SRISK 80-87 $billion for various models. MES estimates are very similar across models.
GARCH posterior means are somewhat higher for Beta, LRMES and SRISK compared to
other models, but the 95% HPDIs show that the differences are not statistically significant.

Tables 5 and 6 here

16Tse and Tsui (2002) proposed an alternative DCC model for the correlation with smoothing that typically
results in less volatile correlation.

17To save space I did not present parameter estimates for other models since they were similar. I compare
various risks for all models in Table 6.
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The systemic risk measures MES, LRMES and SRISK over time are presented in Figures
8A, 8B and 8C correspondingly. All three measures are estimated at the posterior means
of parameters of the DCC-GJR-GARCH model using equations (6)-(8).18 These measures
start in 2006 as I use half of the sample to estimate the shortfall for the first observation
of MES. For MES at any point t I use all available data up to time t. Similar to volatility
during the crisis the MES is the highest for CIT, followed by BAC and JPM. However, more
careful analysis of the distribution of MES at a particular point is needed.

LRMES and SRISK also build up during the crisis and show considerable volatility
afterwords. The SRISK posterior average values are similar to values reported by VLAB
but could be different potentially due estimation period used in VLAB At the end of the
sample (2012/12/31) SRISK using MCMC for the GJR-GARCH model reported in Table
5 is about 98.1 $ billion for BAC with standard deviation of 1.3, 72.2 $ billion for CIT with
standard deviation of 1.4 and 83.7 $ billion for JPM with standard deviation of 1.5. The
VLAB SRISK values do not have standard deviations and are reported in Table 1 ass 100.7
$ billion for BAC, 84.2 $ billion for CIT and 83.0 $ billion for JPM. There seems to be a
difference for CIT while other banks have SRISK within 1 or 2 standard deviations from
VLAB values.

Figure 8 here

6 Posterior Distributions of MES, LRMES and SRISK

Finally I present posterior predictive distributions of MEST+1, LRMEST+180 and
SRISKT+180 derived from MCMC draws in Figures 9, 10 and 11 correspondingly. As
with volatility forecasts I consider three starting points for T . Panel A presents case 1 for
low volatility (T=2012/12/31); panel B is for case 2 of medium volatility (T=2008/08/29)
and panel C is for case 3 of high volatility (T=2009/3/31). The 95% HPDIs for volatility,
beta, MES, LRMES and SRISK were presented in Table 7.

Table 7

I show the results with the GJR-GARCH model as in Brownlees and Engle (2017) even
though the GTARCH model has better fit. Results below turned out to be not statistically
different if GTARCH model is used. Figures 9-11 and Table 7 compare BAC, CIT and JPM
in terms of the posterior pdfs of MES, LRMES and SRISK.

The results for MES in Figure 9 are similar to the results for volatility in Figure 5 with
the difference that for the case 1 now distributions for JPM and CIT are more close and for
case 3 BAC and CIT have slightly overlapping 95% HPDIs. As before case 3 shows high
overlap between three distributions. Separate rankings for MES are possible only for the

18I follow Brownlees and Engle (2017) in using DCC-GJR-GARCH model. The dynamics using other
models is similar.
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period of low volatility where 95% HPDIs do not cross. For case 2 (2008/08/31) banks are
identical and for case 3 (2009/03/31) only JPM can be ranked lower and other two banks
are not distinguishable. Thus, MES does not seem to be a good measure to rank banks
when volatility is high or even moderate. But it could be used to potentially assign the
financial institutions for buckets of not highly overlapping distributions. This way there
will be three separate buckets for case 1, one bucket for case 2 and two buckets for case 3.

Next I consider LRMES in Figure 10. For case 1 of low volatility (2012/12/31) posterior
pdfs of LRMES of CIT and JPM are highly overlapping (as can be also seen from 95% HPDIs
reported in Table 7). BAC has higher average LRMES and can be ranked separately. For
cases 2 and 3 the distributions overlap heavily and these three firms can’t be placed in
separate buckets.

Finally, based on posterior pdfs of SRISK in Figure 11 and confidence intervals in Table
7 for the case 1 of low volatility (2012/12/31) banks can be ranked by SRISK as: #1 BAC
(the highest), #2 JPM and #3 CIT. For the case 2 of medium volatility CIT has higher
SRISK risk while BAC and JPM are the same. For case 3 of high volatility (2009/3/24)
BAC has higher risk while JPM and CIT are the same. So three separate buckets are
resulted for case 1 and two buckets for cases 2 and 3.

Figure 9 here

Figure 10 here

Figure 11 here

In Table 8 I analyze the components of SRISK for 3 cases above. SRISK is a function of
(Leverage (+), Size (+), Beta (+)). Beta and SRISK are estimated at posterior means of
DCC-GJR-GARCH models with standard deviations in brackets. For case 1 of low volatility
(2012/12/31) as discussed above based on SRISK banks can be ranked as: #1 BAC (the
highest), #2 JPM and #3 CIT. The reason that BAC has higher SRISK is due to higher
leverage=17 and higher estimated Beta=1.285. CIT has the lowest assets and equity value.
It is otherwise similar to JPM in terms of beta and leverage. Thus, CIT is ranked the lowest
due its smaller size.

For the case 2 of medium volatility (2008/08/29) on the verge of the financial crisis
posterior PDFs for SRISK indicated that CIT has higher risk while BAC and JPM are the
same. At that time CIT had the highest leverage of 20 and the highest size measured by
assets. CIT’s equity value is smaller than for other two banks thus assets are higher due
to leverage. CIT’s beta is similar to JPM. Based on much higher leverage CIT has the
highest SRISK as would be expected. JPM and BAC are similar for all measures except a
bit higher beta for BAC.

For case 3 of high volatility (2009/3/31) posterior pdfs of SRISK indicate that BAC has
higher risk while JPM and CIT are the same. BAC had leverage of 49 which is more than
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twice of JPM at a time. It also had much higher beta of 4.16, thus, BAC had significantly
higher SRISK than JPM and they should be in different buckets in terms of severity of the
systemic risks they impose on the system. Interestingly, CIT which leverage skyrocketed to
121 at the peak of the crisis is ranked similarly to JPM. Even though CIT also had higher
Beta than JPM the result of similar SRISK is due to the depressed value of equity and assets
($14 Billion and $1697 correspondingly). Thus, CIT which was in the most urgent need
of financial support would be considered in the same bucket as JPM. This simple example
illustrates that SRISK may be influenced by the size of the firm more heavily compared to
other measures such as beta and leverage.

Table 8

It turns out that SRISK measures are statistically different with distributions not cross-
ing in case 1. This means that in the periods of low volatility the SRISK rankings of banks
are justified distinguishing firms in terms of severity of the systemic risks they impose on
the system. However, during periods of moderate or high volatility the rankings are in-
tersecting. SRISK ranks are mostly sensitive to a combination of leverage and size since
LRMES are not ranked differently with 95% highest posterior density intervals intersecting
in periods of moderate and high volatility. 19

6.1 SRISK with simulation

In this section similar to Brownlees and Engle (2017) I show the simulation based ap-
proach for computation of LRMES. I used 100,000 simulation paths of bootstrapped resid-
uals to generate one-month market and firm i cumulative returns.20 I use posterior means
of parameters to compute time series volatility and correlations and similarly to Brownlees
and Engle (2017) find standardized innovations for the market and the firm:

εmt =
rmt − µm
σmt

eit =

(
(rit − µi)

σit
− ρimt

(rmt − µm)

σmt

)
/
√

1− ρ2imt
.

Bootstrapped standardized innovations with replacement are used for generating the fu-
ture paths of returns. The paths for rit and rmt which result in simple cumulative return for
the market below the threshold of C = −10% ( Rm T+1:T+h < C) are used for computation
of LRMES as Monte Carlo average of bank Ri T+1:T+h.

Table 10 shows SRISK results with and without simulation of LRMES. Column 2 is
without simulation using previous approximation of LRMES while Column 3 uses simu-
lations with bootstrapped residuals. The results are of the same order for the averages

19Additional results not presented in the paper indicate that the same pattern happens at other dates in
periods of high volatility.

20Bootstrap is used in order to capture fat tails of returns.
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but estimated standard deviations for simulated LRMES and SRISK values are more than
10 times higher. If simulated systemic risk measures were used BAC and JPM would be
ranked in the same bucket while using approximation without simulation results in separate
rankings for one month LRMES and SRISK. Moreover, due to large standard deviations in
simulated measures buckets would include more firms.

6.2 SRISK adjusted for illiquidity

Since the liquidity risk plays a major role during financial crises I extend SRISK measure
to include the relative spread based on bid-ask closing prices: S = ASK−BID

Mid . In order to
compute relative spread I use the Bid and Ask daily closing prices from CRSP and their
average. The adjustment is similar to liquidity adjusted VaR (see e.g. Bangia et al. (1999))
subtracting S/2 from the returns. Figure 12 shows the relative spread for BAC and JPM,
while the summary statistics are in Table 9. The relative spreads were the highest at the
burst of the internet bubble declining to low levels by the end of 2003 and staying low
till the 2007-2009 crisis resulting in multiple peaks. There is also some increase in relative
spread for BAC around 2011 US Government shutdown. Because the spreads are positive
and highly skewed to the right I show the median among other summary statistics in Table
9. The median for BAC is about 2.5 times higher than for JPM. Higher liquidity risk for
BAC may potentially result in higher expected shortfall.

Figure 12 here

Table 10 shows results with and without illiquidity adjustment for one month LRMES
and SRISK in columns 4 and 5. Results without simulations in column 4 are almost identical
to results in column 2. This is due to approximation of LRMES that uses β rather than
simulated cumulative returns from daily returns. On the other hand, as expected when
simulation is used for illiquidity adjusted returns in column 5 the LRMES and SRISK
average results are always higher than in column 3 without illiquidity adjustment. However,
since the standard deviations are of the same order as before with simulations BAC and
JPM are in the same bucket. Overall, the illiquidity adjustment is important to consider
even if LRMES and SRISK results are not showing statistically significant difference. As
it is a common practice to adjust capital requirements with illiquidity measures different
methods of computing market and funding liquidity may be considered (such as Amihud
(2002) and Brunnermeier and Pedersen (2009) among others). This would be an interesting
topic for future research.

Tables 9 and 10 here
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7 Conclusion

In this paper I introduced Bayesian analysis of systemic risk measures, derived posterior
distributions and showed how to distinguish risks of different financial institutions. An
asymmetric GTARCH model that generalizes popular GJR-GARCH model was estimated
for equities and CDS spreads.

I find that systemic risks measures distributions could be highly overlapping, especially,
during periods of higher volatility. Financial institutions can be grouped by buckets of
non-overlapping posterior distributions of systemic risk measures for the assessment of the
severity they impose on the financial system. In the future research it would be interesting
to compare capital buckets set by regulators with clusters of firms based on systemic risk
distributions that overlap.

More work needs to be done on various systemic risk measures accounting for uncer-
tainty of estimated parameters using methods such as introduced in this paper. LRMES and
SRISK measures after accounting for uncertainty of parameters can’t distinguish rankings
and capital requirements for the largest financial institutions in several settings. Different
illiquidity measures could be explored and more international financial firms can be ana-
lyzed. It would be also interesting to consider different distributional assumptions for the
error term.
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Appendix. Markov Chain Monte Carlo Algorithms

First, I present MCMC algorithm for the GTARCH model in equation (4). For each firm
and the market I estimate parameters in blocks: µ, α = (ω, α1, α2) and β = (β1, β2) using
random walk draws. Let η = (µ, α, β) = (µ, ω, α1, α2, β1, β2) the vector of all GTARCH
parameters from equation (4).

The prior probability for the GTARCH volatility model be given by

π(η) ∝ N(µ0,Σµ) N(α0,Σα) N(β0,Σβ)

where µ0, α0, β0 and Σµ,Σα,Σβ are hyperparameters of the mean and variance of the proper
normal prior distribution of µ, α, β correspondingly. In practice we set the mean parameters
equal to zero and large variances to make sure that the posterior distribution is similar to
likelihood.21 The posterior pdf is proportional to the product of the prior and the likelihood:

p(η|data) ∝ π(η)× Lv(data|η)

where

log(Lv) = −0.5
∑(

nlog(2π) + log(σ2i,t) +
r2i,t
σ2i,t

)
While I assume Normal distribution for the likelihood following Brownlees and Engle (2017),
for the large sample n results for the GARCH parameters would be similar with other
distributional assumptions.22

In the second step I perform MCMC estimation for the parameters of the correlation
model in equation (9): ψ = (αC , βC). The prior pdf π(ψ) is a similar proper Normal with
zero means and large variances for hyperparameters. The posterior pdf of the DCC model
with fitted GTARCH volatility is

p(ψ|data) ∝ π(ψ)× Lc(zi,t, zm,t|ψ)

where the correlation log likelihood is given by

log(Lc) = −0.5
∑(

log(1− ρ2i,t) +
z2i,t + z2m,t − 2ρ12,tz

2
i,tz

2
m,t

1− ρ2i,t

)

Overall, MCMC estimation takes two steps.

Step 1: I estimate parameters in blocks: µ, α = (ω, α1, α2) and β = (β1, β2) for each
asset GTARCH model using random walk draws.

21I tried variances ranging from 10−106 and convergence to the same posterior distributions of parameters
was achieved.

22Using analogue of the quasi-maximum likelihood approach.
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Step 2: using fitted volatilities from step 1 find standardized returns zit, zmt and esti-
mate dynamic correlation between firm i and the market m. I estimate parameters in blocks
using random walk draw: (i) ARCH parameters: αCi , (ii) GARCH parameters βCi.

23

Each step is a separate MCMC chain and careful tests of convergence are applied.24

Using posterior means and modes of parameters I also estimate the Modified Bayesian In-
formation Criterion (MBIC).25 I choose the best model by minimizing MBIC. This criterion
is a Bayesian analogue of Akaike information criterion with ν degrees of freedom.

The modified Bayesian information criterion is given by:

MBIC = −2 ln m(x) + 2(ν + 1)

where the marginal likelihood m(x) is computed by the Laplace-Metropolis estimation and
evaluated at either posterior mean or mode.26 The MBIC criterion is an in-sample informa-
tion criterion showing overall fit of the models penalizing for additional parameters. Other
model selection methods, such as posterior predictive density scores of Geweke and Keanne
(2007) could be applied as well.

23There are two ways to estimate ωim: as part of the ARCH block parameters or simply set it equal to
the unconditional correlation of the firm and the market as is done in Brownlees and Engle (2017).

24I use the graphs of draws, fluctuation test (see Goldman and Tsurumi (2005)) and the acceptance rates
to judge convergence.

25MBIC was introduced in Goldman and Tsurumi (2005).
26Alternatively one can use Chib and Jeliazkov (2001) estimator of marginal likelihood.
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Table 1: VLAB Systemic Risks for US institutions

Institution SRISK% RNK SRISK ($ m) LRMES Beta Cor Vol Lvg
29-Aug-08

Citigroup 12.89 1 132,039 73.64 2.61 0.79 63.4 19.99
JPMorgan Chase 9.37 2 96,045 70.95 2.42 0.74 62.9 13.42
Bank of America 9.24 3 94,637 77.27 2.9 0.74 75 11.94
Freddie Mac 6.74 4 69,069 92.26 5.01 0.44 221.2 297.76
American International Group 6.62 5 67,811 83.01 3.47 0.69 97 17.62
Merrill Lynch 6.6 6 67,588 82.66 3.43 0.78 83.8 22.45
Fannie Mae 6.56 7 67,156 94.01 5.51 0.51 205.4 115.68
Morgan Stanley 6.39 8 65,416 65.62 2.09 0.74 53.7 23.01
Goldman Sachs 5.63 9 57,676 58.04 1.7 0.75 43.3 16.99
Wachovia Bank 5.09 10 52,131 79.05 3.06 0.66 87.3 22.4
Lehman Brothers 4.71 11 48,249 92.18 4.99 0.74 130.2 55.88
MetLife 2.4 12 24,589 51.59 1.42 0.79 34.4 14.56
Prudential Financial 2.12 13 21,714 49.82 1.35 0.72 36.1 15.39
Washington Mutual 2.03 14 20,787 74.95 2.71 0.45 119.8 41.5

31-Mar-09
Bank of America 17.16 1 160,739 85.42 3.77 0.74 195.9 48.7
Citigroup Inc 14.12 2 132,262 85.42 3.77 0.66 219.3 121.21
JPMorgan Chase 13.91 3 130,281 75.58 2.76 0.8 133.1 20.11
Wells Fargo 8.94 4 83,752 80.99 3.25 0.73 170.5 20.53
American International Group 6.21 5 58,141 75.83 2.78 0.44 252.2 55.88
Goldman Sachs 5.47 6 51,257 60.93 1.84 0.8 88.3 18.58
Morgan Stanley 4.28 7 40,046 73.09 2.57 0.77 127.6 24.41
MetLife 3.64 8 34,045 80.2 3.17 0.73 168.5 26.12
Prudential Financial 3.45 9 32,280 88.65 4.26 0.74 221 52.34
Hartford Financial 2.25 10 21,095 84.34 3.63 0.72 194.2 106.08

31-Dec-12
Bank of America 17.98 1 100,700 53.52 1.5 0.66 28.8 16.4
Citigroup Inc 15.03 2 84,188 48.26 1.29 0.66 24.9 16.02
JPMorgan Chase 14.81 3 82,949 43.57 1.12 0.75 18.8 13.69
MetLife 8.62 4 48,306 56.95 1.65 0.73 28.6 22.75
Goldman Sachs 7.62 5 42,680 52.08 1.44 0.74 24.6 15.14
Prudential Financial 7.05 6 39,517 51.59 1.42 0.75 23.2 26.44
Morgan Stanley 6.93 7 38,838 51.62 1.42 0.69 25.9 19.42
Hartford Financial 3.34 8 18,721 54.23 1.53 0.73 26.3 30.17
American International Group 2.34 9 13,109 52.56 1.46 0.62 29.4 9.6
Lincoln National 2.31 10 12,925 52.81 1.47 0.75 24.7 29.11

Source: http://vlab.stern.nyu.edu
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Table 2: Summary statistics for daily equity and CDS log returns
BAC CIT JPM SPX CDS BAC CDS JPM

mean 0.045 -0.009 0.047 0.011 0.053 0.028
std 3.406 3.673 2.841 1.342 5.108 4.203
Skew 0.904 1.468 0.829 0.017 -0.218 -0.175
Kurt 26.08 42.668 15.931 11.143 14.097 16.542
AR(1) -0.011 0.046 -0.089 -0.091 -0.024 0.052

Notes: Returns are measured in basis points. Equity returns data are for the period 1/04/2001-

12/31/2012 from CRSP database. CDS data are for the same period from Bloomberg.
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Table 3: S&P500 volatility models results

GTARCH GJR-GARCH GTARCH0 GARCH
constrained unconstrained constrained unconstrained

µ -0.018 (0.013) -0.022 (0.013) -0.009 (0.016) -0.016 (0.016) 0.001 (0.015) 0.044 (0.016)
ω 0.031 (0.003) 0.029 (0.003) 0.030 (0.004) 0.027 (0.003) 0.036 (0.004) 0.035 (0.004)
α1 0.161 (0.014) 0.158 (0.018) 0.189 (0.018) 0.188 (0.017) 0.087 (0.009) 0.113 (0.009)
α2 0.005 (0.004) -0.011 (0.008) 0.003 (0.003) -0.021 (0.007) 0.087 (0.009) 0.113 (0.009)
β1 0.975 (0.017) 0.977 (0.018) 0.886 (0.009) 0.901 (0.010) 1.022 (0.018) 0.863 (0.010)
β2 0.834 (0.012) 0.854 (0.015) 0.886 (0.009) 0.901 (0.010) 0.772 (0.015) 0.863 (0.010)
(α1 + α2 + β1 + β2)/2 0.987 (0.004) 0.989 (0.004) 0.982 (0.005) 0.985 (0.004) 0.984 (0.005) 0.976 (0.005)

volf=
√

252σ2
T+1 15.121 (0.382) 13.857 (0.260) 16.098 (0.474) 13.243 (0.207)

95% HPDI for volf [14.384–15.856] [13.347–14.371] [15.126–17.056] [12.831–13.642]
Correl (rt−1, log(σ2

t /σ
2
t−1)) -0.738 -0.650 -0.508 -0.116

MBIC at mean 3274.45 3268.55 3412.85 3284.85 3357.71 3431.54
MBIC at mode 3224.72 3224.25 3375.40 3242.54 3318.52 3397.04

Notes: Data for the S&P500 index for the period 01/04/2001-12/31/2012. All coefficients are reported at posterior means and standard

deviations are given in brackets. I derive posterior distributions of 1 day out of sample volatility forecast (
√

252σ2
T+1) using MCMC draws

of parameters. MBIC is the Modified Bayesian Information Criterion.
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Table 4: CDS JPM volatility models results

GTARCH GJR-GARCH GTARCH0 GARCH

µ -0.054 (0.038) -0.074 (0.057) -0.054 (0.036) -0.095 (0.056)
ω 0.401 (0.059) 0.374 (0.059) 0.410 (0.056) 0.370 (0.050)
α1 0.114 (0.015) 0.104 (0.014) 0.127 (0.009) 0.125 (0.009)
α2 0.132 (0.012) 0.137 (0.014) 0.127 (0.009) 0.125 (0.009)
β1 0.838 (0.017) 0.872 (0.010) 0.828 (0.015) 0.870 (0.008)
β2 0.900 (0.013) 0.872 (0.010) 0.903 (0.012) 0.870 (0.008)
(α1 + α2 + β1 + β2)/2 0.991 (0.005) 0.993 (0.004) 0.992 (0.005) 0.995 (0.004)

volf=
√

252σ2T+1 51.440 (1.219) 50.681 (1.053) 50.681 (1.053) 51.148 (0.607)

95% HPDI for volf [48.925–53.755] [48.300–52.434] [48.300–52.434] [49.974–52.341]
Correl (rt−1, log(σ2t /σ

2
t−1)) 0.177 0.147 0.142 0.061

MBIC at mean 11358 11358 11351 11354
MBIC at mode 11318 11333 11317 11326

Notes: Data for JPM CDS for the period 09/06/2001-12/31/2012. All coefficients are reported at

posterior means and standard deviations are given in brackets. I derive posterior distributions of 1

day out of sample volatility forecast (
√

252σ2
T+1) using MCMC draws of parameters. MBIC is the

Modified Bayesian Information Criterion.
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Table 5: Estimation results for DCC-GJR-GARCH model

BAC CIT JPM
αC 0.130 (0.013) 0.063 (0.012) 0.055 (0.017)
βC 0.798 (0.027) 0.873 (0.033) 0.747 (0.134)
Correlation forecast 0.610 (0.011) 0.645 (0.018) 0.750 (0.012)
Beta forecast 1.285 (0.043) 1.073 (0.043) 1.076 (0.032)
MES 0.038 (0.0008) 0.031 (0.0007) 0.028 (0.0005)
LRMES 0.481 (0.011) 0.422 (0.013) 0.423 (0.010)
SRISK ×1010 9.810 (0.129) 7.220 (0.135) 8.366 (0.147)

Notes: Data for BAC, CIT, JPM and S&P500 index for the period 01/04/2001-12/31/2012. All

coefficients, forecasts of correlation, beta, MES, LRMES and SRISK are reported at posterior means

and standard deviations are given in brackets.

Table 6: JPM Risks for various volatility models

GTARCH GJR-GARCH GTARCH0 GARCH
Beta 0.997 (0.036) 1.076 (0.032) 1.002 (0.043) 1.152 (0.044)
MES 0.028 (0.0006) 0.028 (0.0005) 0.030 (0.0007) 0.029 (0.0005)
LRMES 0.399 (0.011) 0.423 (0.010) 0.401 (0.013) 0.445 (0.012)
SRISK ×1010 8.000 (0.168) 8.366 (0.147) 8.023 (0.203) 8.700 (0.190)
95% HPDI for SRISK [7.654–8.344] [8.081–8.661] [7.612–8.429] [8.314–9.080]

Notes: Data for JPM and SPX index for the period 01/04/2001-12/31/2012. All coefficients are

reported at posterior means and standard deviations are given in brackets.

Table 7: 95% Highest Posterior Density Intervals (HPDIs) for GJR-GARCH Model

Volatility Beta MES LRMES SRISK ×1010

CASE 1: Low Volatility 2012/12/31
BAC [28.015–30.408] [1.206–1.369] [0.037–0.040] [0.460–0.503] [9.570–10.067]
CIT [22.130–24.067] [0.991–1.157] [0.030–0.032] [0.398–0.447] [6.961–7.484]
JPM [19.199–20.567] [1.014–1.142] [0.027–0.029] [0.404–0.442] [8.081–8.661]

CASE 2: Medium Volatility 2008/08/29
BAC [48.075–55.482] [2.211– 2.658] [0.058–0.067] [ 0.678–0.744] [ 8.229–9.090]
CIT [45.652–51.194] [1.959– 2.402] [0.056–0.063] [ 0.634–0.708] [ 12.229–12.935]
JPM [49.562–54.189] [2.013–2.374] [0.060–0.066] [ 0.643–0.703] [ 8.797–9.530]

CASE 3: High Volatility in 2009/03/31
BAC [183.072–205.059] [3.716–4.628] [ 0.221–0.248] [0.852 –0.907] [ 16.066–16.287]
CIT [167.778–180.527] [2.976–3.755] [ 0.205–0.221] [ 0.783–0.855] [ 13.135–13.227]
JPM [136.537–146.662] [2.367–3.487] [ 0.164–0.180] [ 0.707–0.836] [ 12.583–13.769]
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Table 8: 6 Months SRISK and Components

Quasi Leverage Equity (Bill $) Quasi Assets (Bill $) Beta SRISK (Bill $)

CASE 1: Low Volatility 2012/12/31
BAC 17 125 2096 1.29 (0.04) 98.10 (1.29)
CIT 15 116 1790 1.07 (0.04) 72.20 (1.35)
JPM 14 167 2320 1.08 (0.03) 83.66 (1.47)

CASE 2: Medium Volatility 2008/08/29
BAC 12 142 1695 2.43 (0.11) 86.58 (2.20)
CIT 20 103 2059 2.19 (0.11) 125.73 (1.75)
JPM 13 132 1771 2.18 (0.09) 91.58 (1.90)

CASE 3: High Volatility 2009/03/31
BAC 49 44 2143 4.16 (0.23) 161.77 (0.57)
CIT 121 14 1697 3.37 (0.20) 131.82 (0.24)
JPM 20 100 2011 2.89 (0.28) 131.53 (2.93)

Table 9: Summary Statistics for Relative Spread based on bid-ask closing prices

BAC JPM

Mean 0.047 0.054
Median 0.019 0.008
Maximum 0.938 0.660
Minimum 0.000 0.000
Std. Dev. 0.086 0.110
Skewness 4.081 3.028
Kurtosis 22.808 12.143
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Table 10: Comparison of 1 month SRISK with and without simulation and illiquidity ad-
justment

returns illiquidity adjusted returns
w/o simulation with simulation w/o simulation with simulation

posterior mean (stdev) mean (stdev) posterior mean (stdev) mean (stdev)

CASE 1: Low VOL 2012/12/31
JPM
LRMES 0.107 (0.003) 0.155 (0.093) 0.107 (0.003) 0.163 (0.094)
SRISK (×1010) 3.512 (0.047) 4.243 (1.424) 3.512 (0.047) 4.369 (1.450)

BAC
LRMES 0.127 (0.004) 0.172 (0.106) 0.127 (0.004) 0.178 (0.110)
SRISK (×1010) 5.729 (0.047) 6.250 (1.224) 5.734 (0.046) 6.323 (1.262)

CASE 2: Medium VOL 2008/08/29
JPM
LRMES 0.205 (0.008) 0.212 (0.124) 0.205 (0.008) 0.226 (0.127)
SRISK (×1010) 3.463 (0.096) 3.545 (1.512) 3.463 (0.094) 3.715 (1.549)

BAC
LRMES 0.226 (0.009) 0.189 (0.132) 0.226 (0.009) 0.200 (0.134)
SRISK (×1010) 2.326 (0.120) 1.887 (1.669) 2.325 (0.121) 2.015 (1.712)
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Figure 1: Returns: BAC, CIT, JPM, SPX

Figure 2: Annualized SPX volatility using all models

31



Figure 3: PDFs of one day forecasts of SPX volatility using all models: (A) 2012/12/31, (B)
2008/08/29, (C) 2009/03/31

32



Figure 4: (A) GJR-GARCH Volatility: BAC,CIT, JPM, SPX, (B) HIGH-LOW Volatility: BAC,
JPM
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Figure 5: PDFs of one day forecasts of volatility for BAC, CIT and JPM using DCC-GJR-GARCH
model: (A) 2012/12/31, (B) 2008/08/29, (C) 2009/03/31
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Figure 6: (A) Quasi Leverage Ratio LV G = (Dt + Et)/Et, (B) CDS spreads, (C) log-difference of
CDS spreads
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Figure 7: (A) Dynamic correlation with the market (DCC-GJR-GARCH), (B) 100 day rolling
correlation with the market, (C) Dynamic estimates of beta (DCC-GJR-GARCH)
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Figure 8: MES, LRMES and SRISK based on GJR-GARCH model: BAC,CIT, JPM
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Figure 9: PDFs of Marginal Expected Shortfall for BAC, CIT and JPM using DCC-GJR-GARCH
model: (A) 2012/12/31, (B) 2008/08/29, (C) 2009/03/31
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Figure 10: PDFs of Long Run Marginal Expected Shortfall for BAC, CIT and JPM using DCC-
GJR-GARCH model: (A) 2012/12/31, (B) 2008/08/29, (C) 2009/03/31
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Figure 11: PDFs of SRISK for BAC, CIT and JPM using DCC-GJR-GARCH model: (A)
2012/12/31, (B) 2008/08/29, (C) 2009/03/31
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Figure 12: Relative Spread: BAC, JPM
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