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Previous research has indicated the possible existence of a liquid-liquid critical point (LLCP) in
models of silica at high pressure. To clarify this interesting question we run extended molecular
dynamics simulations of two different silica models (WAC and BKS) and perform a detailed analysis
of the liquid at temperatures much lower than those previously simulated. We find no LLCP in
either model within the accessible temperature range, although it is closely approached in the case
of the WAC potential near 4000 K and 5 GPa. Comparing our results with those obtained for other
tetrahedral liquids, and relating the average Si–O–Si bond angle and liquid density at the model
glass temperature to those of the ice-like β-cristobalite structure, we conclude that the absence of
a critical point can be attributed to insufficient “stiffness” in the bond angle. We hypothesize that
a modification of the potential to mildly favor larger average bond angles will generate a LLCP
in a temperature range that is accessible to simulation. The tendency to crystallize in these models is
extremely weak in the pressure range studied, although this tendency will undoubtedly increase with
increasing stiffness. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879057]

I. INTRODUCTION

Silica (SiO2) is one of the most important and widely
used materials in today’s world. Because silica is an excellent
insulator and can be easily created through thermal oxidation
of the silicon substrate, SiO2 is also the insulator of choice in
the semiconductor industry. Optical fibers made from pure sil-
ica are widely used by the telecommunications industry and,
because silica and silicates make up over 90% of the Earth’s
crust, SiO2 plays a major role in the geosciences.

Liquid silica is the extreme case of a “strong” liquid.
When cooled, its viscosity approaches the glass transition
slowly, following the Arrhenius law log η ∝ 1/T. In contrast,
the so-called “fragile” liquids reach this glass transition far
more quickly. Glasses rich in silica, but modified by other ox-
ides to lower their viscosities, are “strong” liquids that have
slow vitrification so are preferred by glassblowers and glass
artists who need time to work their magic.

Simulations have indicated that liquid silica does not be-
have like a strong liquid for all temperatures, however. Using
the BKS model1 (see Appendix A), Vollmayr et al. found that
at very high temperatures the diffusion greatly deviates from
the Arrhenius law (and thus behaves like a fragile liquid), and
that the temperature-dependence of the diffusion better fits
the Vogel-Fulcher law.2 It was later shown by Horbach and
Kob3 that the temperature-dependence can also be fitted well
by a power law of the shape D ∝ (T − TMCT)γ in which the
exponent γ is close to 2.1 (compared to 1.4 for water) and
TMCT ≈ 3330 K. This temperature dependence is often found
in simple liquids and has been described in terms of mode-
coupling theory (MCT).4, 5 A deviation from the Arrhenius
law has also been measured in other models of silica,6 and
small deviations from a pure Arrhenius law were found for the

viscosity in experimental data.7, 8 This transition from frag-
ile to strong upon cooling (often called the “fragile-to-strong
crossover”) has also been found in simulations of other tetra-
hedral liquids, such as BeF2,9 silicon,10, 11 and water.12–14 This
phenomenon is not restricted to tetrahedral liquids, however.
For example, it has been proposed that the fragile-to-strong
crossover might be a behavior common to all metallic glass-
forming liquids.15, 16

In addition to the fragile-to-strong crossover, it has been
proposed that liquid silica also has a liquid-liquid critical
point (LLCP)17–19 much like that proposed for liquid water.20

These phenomena may be related. It was recently shown
that in analog plastic crystal systems many strong glass-
formers are accompanied by a singularity (a lambda-type
order-disorder transition) at high temperatures, and that in sil-
ica this singularity could be a LLCP.19 The fragile-to-strong
crossover arises simultaneously with a large increase of the
isobaric heat capacity CP. If a LLCP exists in silica, this heat
capacity maximum should have its origin in its critical fluc-
tuations. The discovery of a LLCP in liquid silica would thus
provide a unifying thermodynamic explanation for the behav-
ior of liquid silica.

II. METHODS

We consider here two different models of silica, the BKS
model by van Beest et al.1 and the WAC model (also known
as the Transferable Ion Model (TRIM) model for silica) in-
troduced by Woodcock et al.21 Both models represent SiO2

as a simple 1:2 mixture of Si ions and O ions, i.e., without
any explicit bonds. One difference between the two models
is that WAC uses full formal charges, while in BKS partial

0021-9606/2014/140(22)/224502/10/$30.00 © 2014 AIP Publishing LLC140, 224502-1
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charges are used. For a detailed description of both models,
see Appendix A.

All simulations are done using Gromacs 4.6.1,22 with
N = 1500 ions, using the Ewald sum (PME) for electro-
statics, and the v-rescale thermostat23 to keep the temper-
ature constant. Most simulations are done in the constant-
volume/constant-temperature (NV T ) ensemble. For the few
constant-pressure (NPT) simulations we use the Parrinello-
Rahman barostat. For most of the simulations we use a time
step of 1 fs, but at very low temperatures we increase the
time step to 4 fs to speed up the simulations to approximately
250 ns/day. We carefully check the temperatures below which
the 4 fs time step gives the same results as the 1 fs time step
and do not include any 4 fs data that lead to a small difference
in pressure, energy, or diffusion.

As a measure of the equilibration time, we define τ

as the time at which
√

〈rO(t)2〉 = 0.56 nm, i.e., the average
time it requires for an O ion to move twice its diameter of
0.28 nm. Most simulations run for over 10 τ , well beyond the
time necessary for the system to reach equilibrium. For the
range of temperatures and pressures considered here, the root
mean squared displacement of the O ion is roughly 1.1–1.6
times that of the Si ion, this factor being the largest at low
temperatures and low pressures.

An important structural feature is the coordination num-
ber of Si by O, since a tetrahedral network is defined by
4-coordination of the network centers. We calculate the Si
coordination number by the usual method, integrating the
Si–O radial distribution function up to the first minimum.
For both models, and at all state points considered here (be-
low 10 GPa), the coordination number lies between 4.0 and
4.9. The coordination number is largest at high densities, and
levels off to 4 when the density is decreased and the pressure
reaches zero and becomes negative.

III. ISOCHORES

The most direct method of locating a critical point is
to calculate the pressure P as a function of temperature T
along different isochores. In a PT-diagram the isochores cross
within the coexistence region and at the critical point.53, 54 At
those state points (at a given P and T), the system is a com-
bination of two different phases with different densities. One
can also locate a critical point by plotting the isotherms in a
PV -diagram in order to determine the region in which the
slope of the isotherms becomes zero (critical point) or neg-
ative (coexistence region). Because it is easier to determine
whether two lines are crossing than whether a curve is flat,
we study the isochores. Figure 1 shows the PT-diagrams with
the isochores of BKS and WAC.

Both diagrams are similar. There is a clear density
anomaly to the left of the temperature of maximum density
(TMD), and if we shift the temperature scale for BKS by ap-
proximately +4000 K, then the BKS isochores match those
of WAC reasonably well. At very low P and high T, the liq-
uid phase is bounded by the liquid-gas (or liquid-vacuum)
spinodal, and lowering P below the spinodal leads to spon-
taneous bubble formation. At very low T the diffusion coef-
ficient drops rapidly and the liquid becomes a glass. Because
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FIG. 1. Isochores of liquid BKS silica (panel a) and liquid WAC silica
(panel b). Thin black/brown lines are the isochores, the temperature of max-
imum density (TMD) is indicated by a thick black line, and green diamonds
indicate part of the liquid-vacuum spinodal. Blue question marks indicate
the approximate locations where a LLCP has been predicted by previous
studies.18, 19 The location of a LLCP can be identified by where the isochores
cross. It seems a LLCP in BKS is unlikely, as the isochores do not approach
each other. The isochores in WAC do approach each other, and might con-
verge at the predicted point. However, at low temperatures the isochores near
2.3 g/cm3 obtain a negative curvature. If this curvature becomes more nega-
tive as T goes down, then it is possible that the isochores will not cross below
3500 K. We conclude that for the temperatures currently accessible, the iso-
chores alone are insufficient to demonstrate a LLCP in WAC.

the time it takes to equilibrate the system is inversely propor-
tional to the rate of diffusion, simulations require too much
time once the oxygen diffusion DO drops below ∼10−8 cm2/s,
which is where the isochores stop in Fig. 1. For both models
this limit is reached at a higher temperature for low P than for
high P. This is caused by the diffusion anomaly (an increase
in P leads to an increase in diffusion), which is present in both
BKS and WAC models.

No crystallization was observed, unless the pressure was
raised to values far outside the range of our detailed studies
(e.g., above 40 GPa the WAC liquid spontaneously crystal-
lizes into an 8-coordinated crystal). Normally, crystallization
is readily detected by a rapid drift of the energy to lower
values. However, when the diffusivity is very low (as in the
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present system, in the domain of greatest interest), the sit-
uation is different and crystal growth can be unobservably
slow. More direct tests are then needed. In the present case,
we have sought information on crystal growth and melting by
creating a crystal front (half simulation box of the liquid inter-
facing with half box of the topologically closest crystal) and
have watched the crystal front receding at high temperature.
However, the attempt to determine melting point by lowering
the temperature and observing reversal of the interface motion
was unsuccessful because the growth rate became unobserv-
ably small (observed over microseconds) before any reversal
was seen. We conclude that, since this crystal front was put in
by hand, the possibility of crystallization by spontaneous nu-
cleation (always the slowest step) followed by crystal growth,
is zero.

Based on the fitting and extrapolation of data, previous
studies have predicted a LLCP in both WAC and BKS.18 With
the increase in computing power, and using the techniques to
speed up the simulations discussed in Sec. II, we are able to
obtain data at lower temperatures than was previously possi-
ble. Our results for BKS (Fig. 1(a)) show that for T > 2500 K
the isochores are nearly parallel, and therefore a LLCP in
BKS is very unlikely. On the other hand, the isochores of the
WAC model (Fig. 1(b)) show a more interesting behavior in
that they clearly approach one another at low T in the vicinity
of P ≈ 5 GPa.

If we only consider the WAC isochores above 4000 K,
then extrapolation would predict that the isochores cross
around 3500 K and 5 GPa. However, below 4000 K we see
that the isochores are starting to display a negative curvature
in the PT-plane. This signals an approach to a density min-
imum, which is the low-T boundary of the density anomaly
region. The negative curvature makes it hard to perform an
extrapolation that convincingly shows that the isochores cross
at lower T. We can therefore only conclude that (for the tem-
peratures currently accessible), the behavior of the isochores
is insufficient to prove or disprove the existence of a LLCP in
WAC.

IV. RESPONSE FUNCTIONS

Upon approaching a critical point, the response functions
diverge. Although true divergence occurs only in the thermo-
dynamic limit N → ∞, a large maximum should still be visi-
ble in response functions such as the isothermal compressibil-
ity KT and the isobaric heat capacity CP even when the box
size is relatively small. Calculations using the Ising model
and finite size scaling techniques applied to simulation re-
sults have shown that (for sufficiently large boxes) the loca-
tion of the critical point is very close to where both KT and
CP reach their global maximum.55,24, 25 If a LLCP truly ex-
ists for the WAC model, then the PT-diagrams of CP and KT

should show a large CP maximum close to where KT has a
maximum—exactly where the isochores come together and
where the LLCP has been predicted to be.

Figure 2 shows four response functions for WAC: (a) the
isothermal compressibility KT, (b) the isobaric heat capac-
ity CP, (c) the isobaric thermal expansivity αP, and (d) the
isochoric heat capacity CV . These have been obtained using

NV T simulations together with the smooth surface technique
described in Appendix B. To check the results generated
by this technique, we determine whether the response func-
tions satisfy the thermodynamic relation V T α2

P /KT + CV

− CP = 0. Because of statistical errors in the data we find
slight deviations from zero, but these are less than 1 J/(mol K)
in magnitude.

The compressibility KT in Fig. 2(a) shows a clear global
maximum near P ≈ 5 GPa and T ≈ 4000 K, because this
is where the isochores in Fig. 1(b) are the closest together
in terms of pressure. It is quite likely that below 4000 K
this maximum increases further. If WAC has a LLCP, then
CP should also have a maximum in that vicinity. However,
Fig. 2(b) shows that this is not the case. There is clear
global CP maximum, but it is located near P ≈ 1 GPa and
T ≈ 6000 K, which is far from the global KT maximum.
Therefore, based on the response functions, we conclude that
WAC does not have a LLCP.

The isobaric thermal expansivity αP (Fig. 2(c)) has a
global minimum between the global maxima of CP and
KT (Figs. 2(a) and 2(b)). This should come as no surprise,
since CP ∝ 〈(�S)2〉 arises from fluctuations in entropy and
KT ∝ 〈(�V )2〉 from volume fluctuations, while the expansiv-
ity αP ∝ 〈�S�V 〉 arises from a combination of both. Even
though the global maxima occur at different places, the slopes
dP/dT of the loci of local maxima are the same, so it seems
likely they have a common origin. Because the system is not
quite critical, the enthalpy fluctuations that determine the heat
capacity can be statistically independent of the density fluctu-
ations.

The variation of the heat capacity with temperature at
constant pressure is shown over the temperature range in
which the system remains in equilibrium, in Fig. 3. Fig. 3(b)
is basically a cross-section of Fig. 2(b). We note first that at
moderately high pressures, 8 GPa, there is no difference be-
tween the WAC and BKS models. In each case the heat ca-
pacity reaches about 35 J/(K mol) before the diffusion be-
comes too slow that we can no longer equilibrate. This is 1.4
times the vibrational heat capacity of 3R ≈ 25 J/(K mol), as
is typical of moderately fragile inorganic liquids (e.g., anor-
thite, ZnCl2) right before ergodicity is broken.26, 27 However,
at pressures between zero and 5 GPa, a major difference is
seen between the models.

Near the TMD we have CP ≈ CV (because the expan-
sivity is very small) so we can compare data with CV from
Scheidler et al.28 for the case of BKS at P = 0. The agree-
ment is quantitative, up to the point where the earlier study
was cut off. Our data confirm the existence of a peak in the
equilibrium heat capacity—an unusual behavior that was not
reported in Ref. 28 but had been noted in the earlier study of
Saika-Voivod et al.29 and was emphasized in Ref. 19.

Although BKS is far from having a critical point, the
existence of this CV maximum reveals the tendency of
this system—which accords well with many aspects of ex-
perimental silica—to develop the same anomalous entropy
fluctuations, and an analog of the Widom line made famous
by water models.

For the WAC model (which approaches criticality much
more closely than BKS does, as we have already seen in
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FIG. 2. Response functions of WAC. (a) The isothermal compressibility KT is consistent with a LLCP near 5 GPa, 4000 K because near that point KT has
a global maximum. (b) The isobaric heat capacity CP, however, has a global maximum around 1 GPa and 6000 K, far away from where KT has its global
maximum. This is inconsistent with the LLCP hypothesis. (c) The isobaric thermal expansivity αP has its global minimum in between the global maxima of KT

and CP. The contour line where αP = 0 corresponds to the location of the TMD. (d) The isochoric heat capacity CV has its global maximum the furthest away
from the global KT maximum.

Fig. 1), this heat capacity peak becomes much more promi-
nent, reminiscent of the behavior of the Jagla model near its
critical point.56 CP reaches a value almost twice that of the
vibrational component; behavior unseen in any previous inor-
ganic system except for BeF2 which is a WAC silica analog.27

V. DISCUSSION

We find no LLCP in either model within the accessible
temperature range, although it is closely approached in the
case of the WAC potential near 4000 K and 5 GPa. The iso-
chores of BKS, which are the most direct indicators of crit-
icality in a physical system, fail to converge into a critical
point. In the case of WAC, we cannot conclude anything from
the isochores, but an analysis of the global extrema of the re-
sponse functions indicates that there is no LLCP in WAC be-
cause the global CP maximum and the global KT maximum
are significantly separated in the PT-plane.

Liquid silica forms a tetrahedral network of bonds, and
below we will show that the lack of a LLCP is related to the
openness of this network structure, which in turn is related to
the stiffness of the inter-tetrahedral bond angles. In addition,
we will argue that criticality in WAC could be achieved with
an adaptation of the pair potential.

The occurrence of a LLCP requires two competing liq-
uid structures that can be in a (meta-stable) equilibrium with
each other. In the case of a tetrahedral network-forming liq-
uid the two relevant structures are usually: (i) a high-density
collapsed structure that is highly diffusive and (ii) a low-
density open network structure that is more rigid, i.e., one
that is still a liquid but less diffusive and more structured. Be-
cause the high-density structure occupies a smaller volume
but has higher entropy (more disorder), the competition be-
tween these two structures is accompanied by a region with a
density anomaly: αP ∝ 〈�S�V 〉 < 0.

The high-density structure is very stable and is the domi-
nant structure at high temperatures, but the low-density struc-
ture requires a more delicate balance of forces in order to be
stable. If the bonds in the liquid are too flexible, the liquid
collapses into the high-density structure. On the other hand,
if the bonds are too rigid the liquid can no longer flow and
becomes a glass.

There are several studies that address this situation. The
2006 study of Molinero et al.30 shows how reducing the three-
body repulsion parameter λ in the Stillinger-Weber potential31

(which controls the bond angle stiffness) causes the first order
liquid-liquid phase transition of silicon (λ = 21) to disappear
at P = 0 when λ < 20.25 (see Fig. 4). This transition oc-
curs between a low-density liquid and a high-density liquid,
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FIG. 3. Comparison of the heat capacities of BKS (panel (a)) and WAC
(panel (b)), obtained by calculating the smoothing spline of H(T) at con-
stant P, followed by taking its derivative (a slightly different method than
was used in Fig. 2(b)). At 8 GPa, there is no significant difference between
the WAC and BKS models, but below 5 GPa WAC has a large maximum in
the range 5000–8000 K (also clearly visible in Fig. 2(b)). In panel (b) we
have included CV data of Scheidler et al.28 (red diamonds), which shows a
maximum around 4500 K. Near the TMD (around 5000 K for P = 0) the ex-
pansivity is small, which means that CV ≈ CP , in agreement with our results.
For BKS this maximum is less clear in CP, though still visible. Because of
small fluctuations in the data, it is difficult to obtain a fit of H(T) that produces
a perfect estimate of CP = dH/dT, leading to artificial oscillations in CP. A
larger data set would reduce this artifact. In addition, the smoothing spline
method assumes zero curvature at the end-points of the data, and this leads
to artifacts at very low T and very high T. For clarity, we have removed the
parts of the curves below the temperature at which CP starts to bend toward
a constant CP value.

where both liquids are metastable with respect to the diamond
cubic (dc) crystal. Crystallization to the dc crystal always oc-
curs from the low-density liquid. When λ > 21.5 crystalliza-
tion happens so fast that it is no longer possible to accurately
determine the temperature TLL at which the phase transition
occurs for P = 0.

Simulations of the Stillinger-Weber model indicate that
the LLCP for λ = 21 is located at −0.60 GPa and
1120 K.32 Since each value of λ defines a unique system with
a unique critical pressure, the vanishing of the liquid-liquid

FIG. 4. Phase diagram of the modified Stillinger-Weber potential in terms of
the tetrahedral repulsion parameter λ and temperature T, at zero pressure.30

The black triangles indicate the melting line of the diamond cubic (dc) crys-
tal, while the green squares denote the melting line of the bcc crystal. The
dashed line separates the dc and bcc regions. Yellow circles indicate the tran-
sition temperature TLL at which the liquid-liquid phase transition line crosses
the P = 0 isobar for that particular value of λ. Silicon is represented by
λ = 21 and has a liquid-liquid critical point at −0.60 GPa,32 and therefore
all LLCPs for λ > 20.25 lie at negative pressures (there is a LLCP for each
value of λ). For λ < 20.25 the LLCPs are at positive pressures and therefore
the phase transition line can no longer be seen in this diagram. When λ is
large the system easily crystallizes, and therefore the phase transition line at
P = 0 can no longer be accurately located when λ > 21.5.

transition at λ < 20.25 implies that this is the λ value for
which the LLCP is at P = 0. Isochore-crossing studies con-
ducted elsewhere33 show that this is indeed the case, with
Tc ≈ 700 K for Pc = 0. It is clear that decreasing λ means
decreasing the tetrahedrality and increasing density. When
λ < 20.25 the LLCP shifts to positive pressures, and there-
fore the phase transition line can no longer be seen in Fig. 4,
as it only considers P = 0. We thus lack the information to de-
termine exactly for which λ there is no LLCP at any pressure,
but it is certain that this happens at some value λ > 0, since
in the most extreme case of λ = 0 we are left with a simple
Lennard-Jones-like model that has no LLCP.

That weakening the tetrahedrality (i.e., making the tetra-
hedral bonds more flexible) leads to the removal of a LLCP,
was also shown in 2012 by Tu and co-authors using a dif-
ferent monatomic model.34 The Hamiltonian of this model
includes a term that lowers the energy when particles are
aligned along near-tetrahedral angles and thus favors a di-
amond cubic ground state. The study of Ref. 34 considers
two versions: one that allows broad flexibility of the inter-
tetrahedral bond angles (leading to weak tetrahedrality), and
another in which the bond angle is more constrained (giving
rise to strong tetrahedrality).

The behavior for strong tetrahedrality is shown in Fig. 5,
and we see that the isochores converge into a critical point.
If the tetrahedrality is weakened slightly, then the isochores
separate, the LLCP disappears, and the diagram starts to re-
semble that of Fig. 1(b) for WAC. It should be mentioned that
a separation of the global CP and KT maxima also occurs in
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FIG. 5. Isochores of the Tu model for the strong tetrahedrality version, which
has a LLCP.34 Gray area indicates the density anomaly region. By reduc-
ing the tetrahedrality, the Tu model can be smoothly changed into the weak
tetrahedrality version, which does not have a LLCP. The isochores of WAC
(Fig. 1(b)) show no LLCP but closely resembles that of the strong Tu model.
We can interpret this as that WAC is close to having a LLCP, but not close
enough. If we were to enhance the tetrahedrality of WAC, it is likely a LLCP
would appear.

the weak tetrahedrality version (as is the case for WAC), while
the CP and KT maxima are close together and near the LLCP
in the strong version of the model.

Finally, we should consider the simulations done on
“patchy” colloids by Sciortino and co-workers. Using the
Kern-Frenkel (KF) model35 (which consists of particles with
tetrahedrally arranged sticky points), these authors demon-
strated that the colloids developed tetrahedral network topolo-
gies, with each particle being surrounded by four others—
which is not itself surprising. More interesting was the find-
ing that, when the effective sizes of the patches were varied,
conditions could be found in which not only were the relax-
ation kinetics strictly Arrhenius in form, but also the amor-
phous state became the free energy ground state of the system,
over a wide range of densities.36 This corresponds to a more
dramatic stabilization of the amorphous state than the kinetic
stability observed in our work. It signifies an absolute stability
against crystallization on any time scale, i.e., the system has
become an “ideal glassformer.”37

Studies with the KF model have also demonstrated that
highly directional bonds are needed to observe spontaneous
crystallization in tetrahedral interacting particles,38 in agree-
ment with the results found by Molinero et al. using the
Stillinger-Weber family of potentials. Since the KF colloids
can be used to describe different tetrahedral models, they pro-
mote our understanding of tetrahedral liquids, such as ST2
and mW water, Stilling-Weber silicon, and BKS silica. Sur-
prisingly, there exists a mapping from these models to the KF
model, using only a single parameter: the patch width.39 The
patch width is related to the flexibility of the bonds between
the particles, and it is therefore likely that spontaneous crys-
tallization and the existence of a LLCP are related to bond
angle flexibility.

All of these studies show that the occurrence of a LLCP
becomes less likely when the parameters controlling tetrahe-

drality are weakened. Unfortunately, the BKS and WAC mod-
els do not have an explicit parameter that controls tetrahedral-
ity, such as the parameter λ in the Stillinger-Weber model. In
this model, there is a direct relation between the value of λ and
the tetrahedrality of the liquid measured by the orientational
order parameter q as defined by Errington and Debenedetti.40

This parameter is constructed such that its average value
〈q〉 will equal zero if all atoms are randomly distributed within
the liquid, while q = 1 for each atom within a perfect tetra-
hedral network (such as in a cubic diamond lattice). For silica
the situation is more complicated. It is not immediately clear
how to define the tetrahedrality of a system that consists of
two types of atoms. One way would be to find for each Si
atom its four nearest neighboring Si atoms and compute 〈q〉
for this subset of atoms. However, this measure would com-
pletely ignore the positions of the O atoms which form ionic
bridges between the Si atoms. Since the O–Si–O bond an-
gle deviates very little from the perfect tetrahedral angle of
109◦,2 it makes sense to focus on the inter-tetrahedral Si–O–
Si bond angle instead. It is commonly agreed that structures
such as diamond cubic have maximum tetrahedrality, and for
silica this corresponds to a system where all Si–O–Si bond an-
gles are equal to 180◦ (such as β-cristobalite). How much the
inter-tetrahedral Si–O–Si bond angles differ from 180◦ can
thus be employed as a measure of the tetrahedrality, and we
have therefore calculated this bond angle distribution for both
BKS and WAC. The location of the maximum in the Si–O–
Si bond angle distribution (i.e., the most probable angle) is
a parameter that one could use to quantify the tetrahedrality.
If we denote the most probable angle at the lowest accessi-
ble temperature (Tg) as θmax, then the tetrahedrality parameter
t can be defined as t ≡ θmax/180◦, where 0 < t < 1. Since
the “openness” of the structure will increase with the aver-
age Si–O–Si angle, one could also define the tetrahedrality
using the volume ratio, i.e., t ≡ V ∗/Vdc, which would require
much less effort to calculate. Here Vdc is the volume of the
perfect diamond cubic and V ∗ is the system volume at some
corresponding state, for instance at the TMD (which is less
arbitrary than Tg).

Let us consider the angular relations and the mechani-
cal forces that determine them in more detail. In terms of the
familiar ball-and-stick model, the Si–O–Si bond could be rep-
resented by two sticks connected at the oxygen atom, with a
spring in between the sticks. This spring constrains the bond
angle to some preferred bond angle θ0, while the value of its
spring constant k2 (the stiffness) dictates how flexible the bond
angle is. From the bond angle probability distribution P(θ ), it
is possible to estimate the values of the preferred bond angle
θ0 and the bond angle stiffness k2.

To extract the Si–O–Si bond angles from the data, we
consider each O ion together with its two nearest Si neigh-
bors and calculate the angle between the two Si–O bonds. In
Fig. 6, we show the resulting probability distributions P(θ )
of the Si–O–Si angle θ for BKS and WAC at zero pres-
sure. These curves have been measured before in previous
studies2, 6 but with less detail. As the temperature decreases,
the width of the distribution decreases and the maximum
shifts toward 180◦. This implies that the liquid becomes more
structured and stiffer. This is to be expected, since at a high
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FIG. 6. Probability distribution of the Si–O–Si bond angle P(θ ) in liquid
silica for (a) the BKS model and (b) the WAC model. As T goes down, the
most probable angle moves closer to 180◦ while simultaneously the width of
the distribution decreases. The first phenomenon causes the liquid to expand
upon cooling, while a reduction in width means that the bonds become stiffer,
which leads to a decrease in diffusion. Both phenomena are related (see be-
low) and are much stronger for WAC than for BKS. Instead of P(θ ) it is
better to consider P(cos θ ) = P(θ )/ sin θ , since a completely random distri-
bution such as in the vapor has P(θ ) ∝ sin θ , while P(cos θ ) is uniform (see
inset of panel (a)). For both models and all temperatures P(cos θ ) resembles
a normal distribution with mean 180◦. This indicates that the preferred angle
is in fact 180◦, and that the width of P(cos θ ) determines both the location of
the peak in P(θ ) as well as its width.

temperatures there are more thermal fluctuations and there-
fore P(θ ) has a broader distribution.

Plotting P(θ ) may not be the best way of presenting the
bond angle distribution, as this distribution is biased toward
90◦ angles. This is particularly clear from the distribution of
the vapor (the thin black line in Fig. 6(a)). The ions in the va-
por have no preferred position with respect to their neighbors,
yet P(θ ) is not uniform but proportional to sin θ . This is re-
lated to the fact that the infinitesimal area element of the unit
sphere is dA = sin θ dθ dφ rather than dθ dφ. As θ → 180◦ the
area element dA approaches zero, and therefore P(θ ) = 0 at
θ = 180◦. Instead of P(θ ) it is better to consider the proba-
bility distribution P(cos θ ) = P(θ )/ sin θ , as is shown in the

insets of Fig. 6. The P(cos θ ) distribution of the vapor is a
uniform distribution (inset of Fig. 6(a)). For the liquid, the
distribution P(cos θ ) is approximately a normal distribution
with its mean at θ0 = 180◦. Evidently, the most probable inter-
tetrahedral angle (the location of the P(θ )-peak) is purely an
effect of the width of this normal distribution combined with
the fact that dA ∝ sin θ .

It is possible to interpret the bond angle distribution
in terms of an effective potential Ueff(θ ), assuming that
P(cos θ ) ∝ exp[−Ueff(θ )/kBT ]. When the effective potential
is harmonic, i.e., Ueff = 1

2k2(θ − θ0)2, the resulting probabil-
ity distribution is a normal distribution with mean θ0 and a
width that depends on temperature T and stiffness k2. In gen-
eral, the effective potential will not be perfectly harmonic and
includes anharmonic terms. Because cos θ is an even function
about θ = 180◦, it is required that P(cos θ ) is as well, and
therefore also Ueff(θ ). Consequently, the leading-order anhar-
monic term in Ueff(θ ) is of the fourth order. The Si–O–Si bond
angle distribution can thus be described by

P(θ ) = A sin θ exp[−Ueff(θ )/kBT ] (1)

with Ueff a Taylor series about the mean angle θ0 = 180◦,

Ueff(θ ) = 1

2
k2(θ − θ0)2 + 1

4!
k4(θ − θ0)4 + . . . . (2)

Here A is a temperature-dependent normalization con-
stant that ensures that the total probability

∫
P(θ ) dθ = ∫

P(cos θ ) dcos θ is equal to one, and kB is the Boltzmann
constant.

The probability distributions of Fig. 6 can be fitted quite
well with Eqs. (1) and (2), even when the sixth power and
higher-order terms are ignored. The resulting values for the
stiffness k2 are shown in Fig. 7. It is immediately clear that
WAC is far more rigid than BKS. For BKS the stiffness does
not vary much with temperature, while increasing the pressure
makes the bonds slightly less stiff. The same is true for WAC
at high T, but below 5 GPa the stiffness shows an increase
when the liquid is cooled. This increase is exactly where CP

has its maximum in Fig. 2(b), and thus we may argue that
the increase in CP is due to a structural change, namely, the
stiffening of the tetrahedral network.

From the isochores in Fig. 1(b), it is clear that WAC is
very close to having a LLCP. If we compare the results of
previous studies done on tetrahedral liquids30, 34 with our re-
sults for BKS and WAC, then we see that the tetrahedrality
of BKS is far too small (i.e., the inter-tetrahedral bond an-
gles are not sufficiently stiff) to have a LLCP, and that WAC
is close, but not close enough. However, it might be possi-
ble to make a small change to the WAC potential to enhance
its tetrahedrality. One simple way to achieve this would be
to add a repulsive term similar to the three-body interaction
of the Stillinger-Weber model. This term should penalize any
Si–O–Si configuration with an angle less than 180◦ with a re-
pulsive energy determined by the intensity parameter λ and
the size of the deviation. The λ value associated with this
interaction should be carefully chosen; if λ is too small no
LLCP will arise, while applying a λ that is too large will likely
lead to crystallization into a diamond (β-cristobalite) struc-
ture. It would be interesting to see at what value of k2 this
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FIG. 7. Stiffness of the Si–O–Si bond angle for both WAC (solid lines, top)
and BKS (dashed lines, bottom). For both models the stiffness k2 goes down
with increasing pressure. It is clear that BKS has more flexible bonds (small
k2), and that WAC is more rigid (large k2) and therefore “more tetrahedral.”
In addition, WAC shows a transition at low T for P ≤ 5 GPa to a state with
an even higher stiffness.

criticality is introduced, and if this value is the same across
other tetrahedral models as well, but this is beyond the scope
of the present project.

The results presented here are also relevant to the possi-
ble existence of a LLCP in different water models, and high-
light the importance of a thorough analysis of the O–H–O
bond angle distribution. Such an analysis, possibly with the
use of a bond angle stiffness parameter such as k2, might be
able to predict if a particular water model will have a LLCP.
Unfortunately, to the best of our knowledge, it is currently
not possible to measure these angles directly in experiments,
as significant help from computer simulations is required to
obtain the angular structure of liquid water.41, 42

VI. CONCLUSION

Although it has been suggested, based on a combination
of simulation and theoretical considerations,18 that both BKS
and WAC have LLCPs at temperatures beyond the accessi-
ble simulation range, our study suggests that neither BKS nor
WAC can reach a critical point. We have compared our results
to those of other tetrahedral models,30, 34 analyzed the bond
angle distributions, and conclude that the lack of a LLCP in
both BKS and WAC is due to a lack of stiffness in the inter-
tetrahedral Si–O–Si bond angles. WAC is close to criticality,
but BKS shows little sign of a LLCP, and since the latter is
considered to be the more realistic model for experimental
silica, we expect that no LLCP occurs in real silica either.

However, this does not mean that manifestations of criti-
cality can never be observed. As Chatterjee and Debenedetti43

have shown theoretically, even a weak tendency toward criti-
cality (as in BKS) can be amplified into a liquid-liquid phase
separation in a binary system. Indeed this notion has been ex-
ploited in Ref. 44 to interpret the (much-studied45–51 but in-
completely understood) splitting out of an almost pure SiO2

phase from such simple systems as the Na2O-SiO2 and Li2O-
SiO2 binary glasses during supercooling.
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APPENDIX A: WAC AND BKS SILICA

One of the simplest models for silica is the WAC
model introduced by L. V. Woodcock, C. A. Angell, and P.
Cheeseman.21 The model is sometimes also known as the
Transferable Ion Model (TRIM) because its potential is rather
general and can also be used to model other ionic liquids.52

In the WAC model, the material consists of a 1:2 mixture of
Si+4 and O−2 ions, without any explicit bonds. Apart from the
electrostatic force, the ions also interact with each other via an
exponential term,

UWAC(rij ) ≡ 1

4πε0

zizj e
2

rij

+ aij

(
1 + zi

ni

+ zj

nj

)

× exp
[
Bij (σi + σj − rij )

]
. (A1)

Here the subscripts i, j ∈ Si,O indicate the species of the two
ions involved, zi the charge of each ion (zSi = +4, zO = −2),
nSi = nO = 8 the number of outer shell electrons, and σ i the
size of each ion (σSi = 0.1310 nm, σO = 0.1420 nm). For
WAC silica the parameters aij and Bij are the same for all pairs:
aij = 0.19 perg ≈11.44 kJ/mol and Bij = 34.48 nm−1.52 The
potential can also be written as

UWAC(rij ) = 1

4πε0

qiqj

rij

+ Aij exp(−Bij rij ), (A2)

with ASiSi = 1.917 991 469 × 105 kJ/mol, ASiO

= 1.751 644 217 × 105 kJ/mol, and AOO = 1.023 823 519
× 105 kJ/mol.

The second model that we consider here is BKS, which is
currently one of the most popular models for silica. The BKS
model was introduced by B. W. H. van Beest, G. J. Kramer,
and R. A. van Santen1 and is similar to WAC. Silica is again
modeled as a simple 1:2 mixture of Si- and O-ions, without
explicit bonds. To produce results that better match experi-
ments and ab initio simulations, and to be able to effectively
represent screening effects, the charges in BKS are not in-
teger values of e but instead are given by qSi = +2.4e and
qO = −1.2e. In addition to this, the BKS potential also dif-
fers from the WAC model in that it includes an attractive r−6

term

UBKS(rij )≡ 1

4πε0

qiqj

rij

+Aij exp(−Bij rij )−Cij r
−6
ij . (A3)
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TABLE I. Parameters of the modified BKS potential of Eq. (A4). Because
Si–Si only has the (repulsive) Coulomb interaction, all parameters are zero
for Si–Si. One mol here indicates one mol of ions, not one mol of SiO2

molecules.

Si–O O–O Units

aij 2.678 430 850 × 105 9.208 901 230 × 104 kJ/mol nm2

bij −7.343 377 221 × 104 −4.873 373 066 × 104 kJ/mol nm
cij 2.353 960 789 × 103 7.337 042 047 × 103 kJ/mol
Aij 1.737 098 076 × 106 1.339 961 920 × 105 kJ/mol
Bij 48.7318 27.6 nm−1

Cij 1.288 446 484 × 10−2 1.688 492 907 × 10−2 nm6 kJ/mol
Uc,ij −0.465 464 470 −0.575 753 031 kJ/mol
rs 0.139 018 528 0.195 499 453 nm
rc 0.55 0.55 nm

In BKS, there is no interaction between two Si-ions apart from
the electrostatics, i.e., ASiSi = BSiSi = CSiSi = 0. The Aij, Bij,
and Cij parameters for the Si-O and O-O interactions are listed
in Table I and are exactly the same as in the original BKS
model.

Although the BKS model has been quite successful in
simulations of quartz and amorphous silica, at temperatures
above ∼5000K two ions can come very close, causing prob-
lems. As r → ∞ the BKS potential diverges to −∞ and
the two ions fuse together—a non-physical phenomenon that
is an artifact of the model. One way to solve this issue is
by including an additional repulsive term at very small r,
e.g., by adding a r−30 term.18 When such a large power is
used, however, a small time step is required to prevent large
forces, which leads to much slower simulations. Because
of this, we instead adjust the BKS potential at small r by
adding a second-degree polynomial for r ≤ rs. Here rs is the
point at which the original BKS force has an inflection, i.e.,
where d2FBKS/dr2 = −d3UBKS/dr3 = 0. We choose the co-
efficients of the polynomial such that the new potential U(r)
has no inflection at r = rs. Adding the polynomial still leads
to U(r) → −∞ when r → 0, but increases the height of the
energy barrier sufficiently to allow us to simulate the high
temperatures we wish to explore. Choosing a short-range cor-
rection to BKS has been found to have little effect on the sim-
ulation results, and merely prevents the ions from fusing.

To further speed up the simulations, we modify the BKS
potential as described by K. Vollmayr, W. Kob, and K. Binder
in Ref. 2, and truncate and shift the potential at rc = 0.55 nm.
Although this truncation leads to a shift in pressure, it oth-
erwise produces approximately the same results.2 In conclu-
sion, the modified BKS potential we use is given by

U ′
BKS(rij ) = 1

4πε0

qiqj

rij

+

⎧⎪⎪⎨
⎪⎪⎩

aij r
2
ij + bij rij + cij − 1

4πε0

qiqj

rij
(rij < rs)

Aij exp(−Bij rij ) − Cij r
−6
ij − Uc,ij (rs < rij < rc)

0 (rij > rc),

(A4)

with the parameter values for ij = SiO and ij = OO listed in
Table I. For the Si–Si interaction the potential is U ′

BKS(rSiSi)

= 1
4πε0

q2
Si/rij and does not involve any cutoffs, apart from the

real-space cutoff of the Ewald sum.

APPENDIX B: CALCULATION OF RESPONSE
FUNCTIONS VIA SURFACE FITS

In order to construct isobaric response functions from
a large set of constant-volume (NV T ) data, some type of
fit or interpolation is needed. For example, to calculate CP

= (∂H/∂T)P we consider the enthalpy H as a function of
both P and T and fit the data [P, T, H] with a smooth three-
dimensional surface H(P, T). Abrupt changes in H(P, T) lead
to large spikes in its derivative ∂H/∂T, and thus the H(P, T)
surface must be smooth if we are to obtain a meaningful CP.
Fitting a surface rather than a curve has the additional advan-
tage that more data are taken into account, resulting in better
statistics. An alternative approach is to calculate CP via fluc-
tuations in H, but it has been shown25 that first fitting H(T) and
then taking a derivative leads to cleaner results. It is of course
easier to calculate CP by doing constant-pressure (NPT) sim-
ulations instead, but then one would have the same problem
with calculating CV . We conclude that we can easily calculate
all response functions if we apply a smooth surface fit f(x, y)
to a set of three-dimensional points zk(xk, yk).

Fitting a surface to a set of points means striking a bal-
ance between the “smoothness” of the fit and the fitting error
induced. One measure of smoothness is the Laplacian ∇2f,
since a small Laplacian means little change in the slope of
f(x, y), and thus a smoother function. Hence, to obtain a
smooth surface fit f(x, y) through the data points zk(xk, yk) with
k = 1, 2, . . . , N, we minimize

J =
N∑

k=1

wk

[
f (xk, yk) − zk

]2 +
∫∫ ∣∣∇2f (x, y)

∣∣2
dx dy.

(B1)

The weights wk provide the balance between the smoothness
and the fitting error. If we set wk too low, we obtain a very
smooth fitting function f(x, y) that poorly represents the data.
If we set wk too high, the function f(x, y) will go through all
the data points but will show large variations. Because large
variations in the surface lead to even larger variations in the
derivatives, the H(P, T) surface must be very smooth when we
calculate the CP. Fortunately, introducing small fitting errors
does not cause problems, because the simulation data already
suffer from small statistical errors. If the underlying response
function is in fact smooth, then it is possible to use the fitting
errors to partially cancel the statistical errors.

Minimization of the functional J in Eq. (B1) is not a
new concept. For example, the CSAPS function in MATLAB
applies a similar minimization scheme to calculate a cubic
smoothing spline. As opposed to this MATLAB function, we
do not impose the constraint that f(x, y) is a tensor product
spline, but instead represent f(x, y) by a set of 100 × 100
points (xi, yj, fij) placed on a regular grid (xi, yj). Bilinear in-
terpolation is used to estimate the value of f(x, y) between
these grid points, and the derivatives and the Laplacian are
calculated using finite (central) differences. To compensate
for the reduced number of data points near the edges of the
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domain, we recommend that higher-order differences near the
edges be used.
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