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The Behavioral Ecology of

Anuran Communication

Kentwood D. Wells and Joshua J. Schwartz
1. Introduction

As the last rays of sunlight disappear from the evening sky, a shallow

marsh in Panama begins to come alive with the calls of frogs and toads.

Among these is a small yellow and brown hourglass treefrog, Hyla ebraccata

(Fig. 3.1C). First, a single male begins giving a tentative series of single-note,

buzzlike advertisement calls. Soon other males join the first one, and a chorus

begins to develop. The first male responds to the calls of his neighbors by

placing his own calls immediately after their calls, and he soon increases his

calling rate and begins to add clicklike secondary notes to his calls in an attempt

to outsignal his rivals. Suddenly another male calls only a few centimeters

away, and the first male responds by modifying the introductory notes of his

calls, producing aggressive notes with a pulse repetition rate about three

times that of his advertisement calls. As the two males approach each other,

they gradually increase the duration of their aggressive calls and eventually

stop giving secondary click notes as a short wrestling bout ensues. After a few

seconds, the intruding male withdraws, and the first male returns to advertisement

calling.

Having sorted out spacing within the chorus, most of the males soon settle into

a regular rhythm of advertisment calling, punctuated by occasional aggressive

calls. Periodically they stop calling as their calls are overpowered by bursts of

calling from groups of males of another frog, the small-headed treefrog (Hyla

microcephala) (Fig. 3.1D). The males of H. ebraccata have difficulty making

their calls audible when surrounded by the other species, and they attempt to place

their calls in the silent periods between bursts of H. microcephala calling activity.

After two hours of calling, the first male detects the movement of a noncalling

frog nearby. Sensing that a female may be approaching, he immediately

switches to a rapid series of repeated introductory advertisement call notes. The

female turns toward the male, and with a few zigzag hops, approaches his calling

site and allows him to clasp her in amplexus. The pair then moves off to find a

suitable leaf on which to lay their eggs, positioned a half meter or so above the

shallow water where the tadpoles will complete their development. After mating,
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Figure 3.1. Calling males of some anurans in which vocal communication has been

studied in detail. (A) Pseudacris crucifer (Hylidae). (B) Hyla versicolor (Hylidae). (C)

Hyla ebraccata (Hylidae). (D) Hyla microcephala (Leptodactylidae). (E) Eleutherodactylus

coqui (Leptodactylidae). (F) Physalaemus pustulosus (Leptodactylidae). Photos by

Kentwood D. Wells.
the male takes no further interest in his offspring, but moves to a nearby calling

perch and resumes calling.

These scenes, which can be repeated dozens of times each night in a single

breeding assemblage in Panama (Schwartz and Wells 1984a; Wells and Schwartz

1984a,b), illustrate the complexity of vocal interactions that can occur in a

chorus of frogs. Many anurans have repertoires consisting of several distinct

types of calls, and they often exhibit considerable plasticity in their use of different

call elements, responding to changes in local chorus density, the presence

of nearby conspecific and heterospecific callers, and to approaching females by

modifying their vocal signals (Wells 1988; Gerhardt and Huber 2002). All male

frogs have the same ultimate goal: to outsignal their competitors and attract

females, eventually fertilizing their eggs to contribute their genes to the next

generation of frogs. The ways in which they accomplish this goal vary among

species, however. Some anurans have relatively simple calls, whereas others have

exceedingly complex calls. Males of some species are very aggressive toward

other males in a chorus, whereas males of other species seldom react to their

neighbors.

This chapter reviews the behavioral ecology of anuran vocal communication.

First, the influence of sexual selection on the production and energetic cost of

calls is briefly reviewed. Next, the major types of calls produced by male anurans,

as well as the less common vocal signals of females are discussed. The interactions

among males in choruses and the ways in which these interactions affect

the ability of males to attract mates are covered in some detail, followed by a

brief discussion of ways in which features of the anuran auditory system contribute

to communication within a chorus setting.

2. Sexual Selection, Energetic Constraints, and Signaling

System Evolution

When Charles Darwin originally outlined his theory of sexual selection in his

book, he had relatively little to say about sexual selection in amphibians. He did

suggest that the calls of frogs are analogous to the songs of birds and probably

were shaped by sexual selection. Indeed, subsequent research has shown that

sexual selection is the main driving force in the evolution of anuran acoustic communication

(Gerhardt and Huber 2002). Many features of anuran calls can be

shaped by sexual selection, including call intensity, calling rate, call duration, call

pitch, and the temporal pattern of interaction among competing males. In addition,

all of the morphological, physiological, and biochemical machinery

involved in call production is molded by sexual selection. Because the energetic

cost of calling in many species is quite high, selection should favor mechanisms

to increase the efficiency of sound production and transmission, thereby enabling

a calling male to conserve energy reserves while maximizing the transmission of

signals to receivers, especially females.

2.1 Morphology and Physiology of Call-Producing Muscles

The basic mechanisms of sound production during calling are discussed in the

next chapter (see Walkowiak, Chapter 4). The power for sound production is provided

mainly by the sexually dimorphic trunk muscles, and sexual selection has

produced a number of morphological and biochemical adaptations for call production

by males, including highly aerobic muscle fibers, high concentrations of

mitochondria, high activities of aerobic enzymes, heavy vascularization, and

ample supplies of lipid and carbohydrates to fuel call production. There is a strong

interspecific correlation between muscle structure and biochemistry and typical

calling rates, with the most aerobic muscles being characteristic of species with

high calling rates (Wells 2001).

The repeated contraction of the trunk muscles to produce calls can be energetically

expensive in species with high calling rates (Wells 2001). The North

American spring peeper (Pseudacris crucifer; Fig. 3.1A) produces single-note

calls (Fig. 3.2A), each representing one contraction of the trunk muscles, and can

produce up to 100 call notes per minute. Similarly, the tiny Neotropical smallheaded

treefrog (Hyla microcephala) (Fig. 3.1D) produces long trains of notes

grouped into multinote calls (Fig. 3.2E) and also can produce up to 100 notes per

minute (Wells and Taigen 1989). Males can call at these levels for several hours

each night. Sustaining such high calling effort requires a high aerobic capacity,

because anaerobic metabolism plays little role in call production. For these small

treefrogs, rates of oxygen consumption during calling can be up to 25 times

resting rates. This results in a significant drain on stored energy reserves. Shortterm

performance probably is limited mainly by carbohydrate reserves in the form

of glycogen stored in the muscle tissue (Bevier 1997b), whereas lipid reserves

are depleted over longer time intervals (Ressel 2001). The high energetic cost of

calling probably explains the relatively short average chorus tenure of many male

frogs (Murphy 1994), which exerts strong selective pressures on males to outsignal

their competitors and attract females as rapidly as possible. Some frogs,

however, invest much less effort in calling each night, but can remain in a chorus

for several months (Bevier 1997a; Wells 2001). For these species, the ability to

remain active for long periods of time probably is a more important determinant

of mating success than nightly calling performance.

2.2 Vocal Sacs as Sound Radiators and Visual Signals

Because the metabolic cost of calling is high for many anurans, any adaptation

to increase the efficiency of sound transmission will be favored by selection. Most

anurans that call in air have inflatable vocal sacs that radiate sound to the external

environment, providing greater energetic efficiency than would be possible

with the larynx alone, because the vocal cords are much smaller than the wavelength

of the call. Even so, the efficiency with which frogs convert metabolic

energy into radiated sound energy is quite low (Prestwich 1994; McLister

2001). This problem is most acute for species with very low-pitched calls, 

because low-pitched sounds have long wavelengths. Small species with highpitched

calls and large vocal sacs relative to the size of the head (and larynx) can

be expected to be more efficient sound radiators and have unusually loud calls
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Figure 3.2. Representative anuran calls. The sound spectrograms at the top of each part

show changes in frequency (kHz) over time. The oscillograms at the bottom of each part

show changes in amplitude (mV), over time. (A) Tonelike peep of Pseudacris crucifer.

(B) Amplitude-modulated aggressive call of P. crucifer. (B) Amplitude-modulated advertisement

call of Hyla versicolor. (C) Tonelike “co” note and frequency-modulated “qui”

note of Eleutherodactylus coqui advertisement call. (D) Multinote aggressive call of E.

coqui. (E) Multinote advertisement call of Hyla microcephala, composed of an introductory

note followed by several biphasic secondary click notes. (F) Three-note advertisement

call of Hyla ebraccata (left) and two-note aggressive call of H. ebraccata (right),

with much higher pulse rate in the introductory note. Recordings by Kentwood D. Wells

and Joshua J. Schwartz.
for their body size. For example, both Pseudacris crucifer and Hyla micro-
cephala, which have proportionately large vocal sacs, weigh only about 1 g, but

can produce calls as loud as those of songbirds that are 10 to 100 times heavier

(Pough et al., 1992).

In addition to radiating sound, vocal sacs also can serve as visual signals, which

can increase the effectiveness of acoustic signals by making them more detectable

by receivers, especially in noisy environments. In many frogs, the throat region

and vocal sac are conspicuously colored. Usually these are highly reflective colors

such as white or yellow, but some frogs have black vocal sacs that also make the

males conspicuous (see Hödl and Amezquita 2001 for a review of visual signaling

in frogs). Experimental studies using a mechanical frog model showed that a

combination of an acoustic signal and a visual signal of a moving vocal sac was

most effective in eliciting aggressive responses from males of a South American

dendrobatid frog, the brilliant-thighed poison frog (Allobates [Epipedobates]

femoralis; Narins et al. 2003). In another dendrobatid frog, the palm rocket frog

(Colostethus palmatus) from Colombia, females were attracted to the moving

vocal sac of a model male frog, but not to a model with a deflated vocal sac

(Lüddecke 1999). Males of a leptodactylid frog, the Túngara frog (Physalaemus

pustulosus), have unsually large and conspicuous vocal sacs (Fig. 3.1F). Video

playback of a calling male with a moving vocal sac enhanced the attractiveness

of an acoustic stimulus to females (Rosenthal et al. 2004).

2.3 Other Sound Radiators

Although vocal sacs probably are the main sound-radiating organs in most frogs,

they are not the only ones. For example, much of the sound energy produced by

a calling male North American bullfrog (Rana catesbeiana) is radiated not from

the vocal sacs, which sit in the water, but from the very large tympanic membranes

(Purgue 1997). Male bullfrogs, and males of a number of other ranid frogs,

have tympana up to 50% larger than those of females. These enlarged tympana

have a thickened central patch that increases the mass of the eardrum and apparently

serves to decouple the auditory and sound-broadcasting functions of the

eardrum. Males of a West African frog, Parker’s water frog (Petropedetes

parkeri), have a conspicuous spongy papilla projecting from the tympanum,

offset from the center of the membrane. There is some evidence that the ears of

these frogs are used for both sound reception and sound transmission, as in North

American bullfrogs (Narins et al. 2001).

3. The Vocal Repertoires of Frogs and Toads

Some anurans have relatively limited repertoires of call types, whereas others

have a diverse array of calls used in different social contexts. Most anurans have

advertisement calls that are given by males to advertise their positions to females

and to other males, although some species have secondarily lost the advertisement

call (Wells 1977a). Many species also have release calls, produced by both

males and females, which are given when an unreceptive individual is clasped

by a male. Some species also have distinct courtship calls, given by males when

they detect females nearby. Less common are courtship calls given by females,

often in response to the calls of males. Aggressive calls, used during agonistic

interactions among males, are common, although anurans in some clades typically

lack distinct aggressive calls (e.g., many toads in the genus Bufo). Some

anurans also produce distress calls when seized by predators, although there is

little evidence to suggest that these function in intraspecific communication. We

focus our discussion on the three categories of calls used most commonly in social

interactions in choruses: advertisement calls, courtship calls, and aggressive

calls.

3.1 Advertisement Calls

The advertisement calls of anurans convey the same sorts of messages as do

advertising signals of many other animals: they signal the species identity, sexual

receptivity, position, size, and in some cases, the individual identity of males in

a chorus. Hundreds of playback experiments with scores of species have shown

that female frogs will approach conspecific calls presented alone or in choice tests

with heterospecific calls (Gerhardt and Huber 2002). In species in which males

call over long periods of time and females are in the same habitat, advertisement

calls could stimulate hormone production in females and maintain reproductive

condition in females, although this has rarely been demonstrated experimentally

(Lea et al. 2001). Advertisement calls also advertise a male’s position to other

males and help to maintain spacing between calling individuals, with perceived

call intensity providing information about the spatial proximity of competing

males (Brenowitz et al. 1984; Wilczynski and Brenowitz 1988; Brenowitz, 1989;

Gerhardt et al. 1989).

Males of some species can use the pitch of other males’ advertisement calls to

assess the body size of competitors (Davies and Halliday 1978; Arak, 1983b;

Robertson 1984; Given 1987; Wagner 1989c). Males are more likely to approach

or attack speakers playing high-pitched calls of small males, but retreat from the

low-pitched calls of large males. Males of some species alter the pitch of their

calls in response to those of neighboring males (e.g., Rana catesbeiana; Bee and

Bowling 2002), but it is not always clear that this provides more accurate information

about male body size to opponents (Bee et al. 2000; Bee 2002; see further

discussion of aggressive interactions below).

Although the advertisement calls of most anurans consist of a single note, a

series of identical repeated notes, or a long trill, some have complex advertisement

calls with more than one kind of note (Wells 1988). Most frogs have only

a few kinds of notes in their calls, but some rhacophorid and mantellid treefrogs

have extraordinarily complex calls, with a dozen or more distinct kinds of notes.

The functions of these very complex calls are not fully understood, but some call

components appear to be used in aggressive interactions among males (Narins

et al. 2000, Christensen-Dalsgaard et al. 2002; Feng et al. 2002).
In some species, different types of notes apparently convey separate messages

to males and females. For example, in the Puerto Rican common coquí

(Eleutherodactylus coqui) (Figs. 3.1E, 3.2C), the beginning “co” note elicits

calling and aggressive responses from males, but they show little response to the

secondary “qui” note (Narins and Capranica 1978). Females are attracted to the

“qui” note, but show little response to the “co” note alone (Narins and Capranica

1976). In the Australian eastern smooth frog (Geocrinia victoriana), the long

introductory note conveys an aggressive message to males, whereas the shorter

secondary notes are attractive to females (Littlejohn and Harrison 1985). Asomewhat

similar system is found in the short-legged spiny reed frog (Afrixalus

brachycnemis) from southern Africa, which has a rapidly pulsed note that serves

as an aggressive signal and a longer trill that is attractive to females (Backwell

1988). In Fornasini’s spiny reed frog (Afrixalus fornasinii), males give long trains

of very short pulses (trills) that often grade into a series of repeated pulsed notes

that are given mainly in response to other males (Schneichel and Schneider 1988).

Some frogs add secondary notes to their calls during chorusing interactions (Figs.

3.2E,F), including Hyla ebraccata (Fig. 3.1C) and Hyla microcephala (Fig. 3.1D)

from Panama; these are discussed in a later section.

3.2 Male Courtship Calls

Male frogs often alter their vocal behavior when females are nearby, producing

calls that are likely to increase the signal-to-noise ratio of the male’s calls or

provide directional cues to females (Wells 1977b, 1988). Male spring peepers

(Pseudacris crucifer) give longer peeps when females are nearby (Rosen and

Lemon 1974). Male gray treefrogs (Hyla versicolor) respond to approaching

females by giving trills that can be several times the length of normal advertisement

calls (Wells and Taigen 1986; Klump and Gerhardt 1987). Similar behavior

is seen in the Trinidad poison frog (Mannophyrne trinitatis; Wells 1980b).

Males normally give two-note advertisement calls, but combine these into a continuous

trill when females are approaching, producing a call with 50% more notes

than the normal advertisement call (Fig. 3.3).

Often males simply increase calling rates in response to approaching females

(reviewed by Wells 1988 and Gerhardt and Huber 2002). Others produce distinctive

courtship calls, especially species in which the male leads the female to

a concealed oviposition site during courtship (Wells 1977b, 1988; Townsend and

Stewart 1986; Hoskin 2004). Distinctive courtship calls also occur in some

species in which the male calls from a fixed location to attract the female (Greer

and Wells 1980; Kluge, 1981; Robertson 1986). In midwife toads (Alytes obstetricans),

males give courtship calls while moving toward females and females

sometimes respond with calls of their own (Bush 1997). Courtship calls sometimes

are given at lower intensity than advertisement calls, perhaps to avoid alerting

other males to the presence of a female (see discussion of “eavesdropping”

below). Ovaska and Caldbeck (1997b) showed that males of the Antilles robber

frog (Eleutherodactylus antillensis) respond to playbacks of courtship calls by
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Figure 3.3. Sound spectrograms of (A) the advertisement call and (B) a courtship trill of

Mannophryne trinitatis. Recordings by Kentwood D. Wells.
approaching the speaker playing the call, a behavior not seen during playbacks

of advertisement or aggressive calls.

Some frogs have more than one type of courtship call. In Fleischmann’s glass

frog (Hyalinobatrachium fleischmanni) from Panama, a male gives long, frequency-

modulated calls when a moving frog is first detected nearby. This appears

to serve as an aggressive call when directed at males, but probably also provides

direction cues to females. Once a female begins to approach the male, he switches

to a series of short chirps (Greer and Wells 1980). In Mannophryne trinitatis, a

male gives a long trill when courting a female at a distance, but switches to quiet

chirps as he leads the female to a hidden oviposition site (Wells 1980b). Males

of the Australian ornate frog (Cophixalus ornatus) give long courtship calls while

leading females to nest sites, but give shorter calls when in a nest with a female

(Hoskin 2004). Both types of calls are delivered at a high rate, but low intensity.

Short-range courtship calls also have been reported in several dendrobatid frogs

and some species of Eleutherodactylus with concealed oviposition sites (Ovaska

and Hunte 1992; Bourne 1997; Ovaska and Caldbeck 1997a, 1999).

3.3 Female Courtship Calls

Some female frogs vocalize in response to the calls of males (Emerson and Boyd

1999), although all female frogs lack vocal sacs. The best-studied species are

midwife toads in the genus Alytes. Female midwife toads call in response to male

calls, and these calls elicit soft courtship calls from males (Bush 1997; Bosch and

Márquez 2001). The calls given by females probably enhance the ability of males

and females to find each other. Male midwife toads often call from hidden locations

in rock crevices or burrows, but sometimes move toward females and

engage in vocal duets with them (Bush et al. 1996; Bush 1997). Duetting between

males and females also occurs in the African common platanna (Xenopus laevis),

which often calls in muddy water where males may not be visible to females
(Tobias et al. 1998). Males of Serro Utyum robber frog (Eleutherodactylus podiciferus)

from Costa Rica switch from the normal advertisement call trill to a

series of squeak calls after hearing similar squeaks given by females (Schlaepfer

and Figeroa-Sandí 1998). Low-intensity courtship calls have been reported in a

number of ranid frogs, including the North American carpenter frog (Rana virgatipes)

(Given 1987), bullfrog (R. catesbeiana; Judge et al. 2000), fanged frogs

of the genus Limnonectes from Borneo and Southeast Asia (Emerson 1992; Orlov

1997), the Asian rice frog (Limnonectes limnocharis), water skipping frog

(Euphlyctis cyanophlyctis), and red-eared frog (Rana erythraea), and the Levuka

wrinkled ground frog (Platymantis vitiensis) from Fiji (Roy et al. 1995; Boistel

and Sueur 1997). At least two nonexclusive functions of female courtship calling

have been proposed: (1) facilitating mate location by eliciting more calling from

nearby males, enabling females to distinguish territorial from satellite males, and

(2) identifying of females as potential mates rather than territorial competitors

(Emerson and Boyd 1999). To date, however, very few experimental studies of

male responses to female calls have been done (Given 1993a; Bush et al. 1996;

Bush 1997; Tobias et al. 1998; Bosch 2001, 2002), and both of these remain viable

hypotheses.

3.4 Aggressive Calls

Many male frogs defend their calling sites against conspecifics and often have

distinctive aggressive vocalizations. Aggressive and advertisement calls usually

have similar dominant frequencies, but differ in temporal structure, but there is

no unique temporal structure common to all aggressive calls. Certain constraints

on call production probably limit divergence between aggressive calls and advertisement

calls within species. Frogs that produce wideband calls typically produce

relatively short pulses of sound and probably are incapable of producing notes of

long duration, whereas frogs that produce narrowband calls typically have longer

notes and probably cannot produce very short calls (Gerhardt and Huber, 2002).

For example, in Pseudacris crucifer, the advertisement call is a tonelike peep,

whereas the aggressive call is a long trill consisting of a series of slightly shorter

pulses (Fig. 3.2A). In other chorus frogs in the genus Pseudacris, the advertisement

call consists of trains of extremely short pulses, whereas aggressive calls

are longer trains of the same type of pulses, sometimes delivered at faster rates

(Owen 2003).

In a dendrobatid frog from Panama, Colostethus panamensis, the advertisement

call is a short trill and the aggressive call is a long tonelike peep that resembles

a trill with the notes merged together (Wells 1980a). These calls sometimes

grade into each other as a male makes the transition from aggressive to advertisement

calling (Fig. 3.4). Males of another species in the same genus, the Bogata

rocket frog (C. subpunctatus), sometimes respond to calls of other males by

grouping call notes into bouts of two or three notes. This does not appear to

enhance the attractiveness of males to females, but does function as an aggressive

signal (Lüddecke 2002). The Santo Andre snouted treefrog (Scinax rizibilis)
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Figure 3.4. Sound spectrograms of the calls of Colostethus panamensis. (A) Single-note

aggressive call. (B) Two-note aggressive call. (C) Transition from the aggressive call to

an advertisement call. (D) Three-note advertisement call. Recordings by Kentwood D.

Wells.
from Brazil has an advertisement call consisting of a series of repeated notes,

whereas aggressive calls consist of irregular trains of short pulses. This species

also has a close-range aggressive call consisting of short bursts of pulses (Bastos

and Haddad 2002). In the Lesser Antilles robber frog (Eleutherodactylus urichi)

from Trinidad, the advertisement call is a short, tonelike peep, the aggressive call

an even shorter click (Wells 1981). In contrast, the aggressive call of Eleutherodactylus

coqui is a long train of notes (Fig. 3.2D). The advertisement calls of the

Angola forest treefrog (Leptopelis viridis) are short clicks, whereas the aggressive

calls are about twice as long and have a slightly lower dominant frequency

(Grafe et al. 2000).

A number of hylid treefrogs from South and Central America, including the

hourglass treefrog (Hyla ebraccata), small-headed treefrog (H. microcephala),

and veined treefrog (H. phlebodes) produce aggressive calls with a structure

similar to that of advertisement calls (Fig. 3.2F), but with a much higher pulse

repetition rate (Schwartz and Wells 1984a,b, 1985; Wells and Schwartz 1984b).

Because aggressive calls do not function in species recognition, one might expect

such calls to be less stereotyped than are advertisement calls. Indeed, in these and

other anuran species, temporal features such as pulse repetition rate and number

of pulses are much more variable in aggressive calls than in advertisement calls

(Schwartz and Wells 1984a; Littlejohn 2001; Owen 2003).

Some frogs change the dominant frequency of their advertisement calls when

responding to the calls of other males. This type of behavior has been reported

in the white-lipped frog (Leptodactylus albilabris) from Puerto Rico (Lopez et

al. 1988) and in several North American anurans, including Northern cricket frogs

(Acris crepitans; Wagner 1989b, 1992), green frogs (Rana clamitans; Bee and

Perrill 1996; Bee et al. 1999, 2000), carpenter frogs (R. virgatipes; Given 1999),

bullfrogs (R. catesbeiana; Bee and Bowling 2002), and American toads (Bufo

americanus; Howard and Young 1998). In all cases except L. albilabris, males

lower the dominant frequency of their calls. This generally has been interpreted
as an aggressive response, perhaps a means of conveying information about the

size of the caller, although in bullfrogs, such changes do not appear to be correlated

with fighting ability (Bee 2002).

Many anurans have graded signaling systems in which long- and short-range

aggressive calls represent two ends of a continuum. This has been studied in most

detail in Hyla ebraccata from Panama (Wells and Schwartz 1984b; Wells and

Bard 1987; Wells 1989). This species has advertisement calls consisting of an

introductory note and a series of shorter secondary notes with the same dominant

frequency and pulse repetition rate. Aggressive calls have introductory notes with

much higher pulse rates and are more variable in duration. As males approach

each other, they lengthen the introductory notes of their aggressive calls while

gradually dropping secondary click notes (Fig. 3.5). The secondary notes make

the calls more attractive to females, which are not strongly attracted to aggressive

calls with high pulse repetition rate (Wells and Bard 1987). Hence, males

gradually adjust the relative aggressiveness and attractiveness of their calls,

depending on the proximity of their opponents. Similar behavior has been

described in two other Panamanian treefrogs, H. microcephala (Schwartz and

Wells 1985) and H. phlebodes (Schwartz and Wells 1984b). As in H. ebraccata,

females of H. microcephala prefer the lower pulse rates of advertisement calls to

the higher pulse rates of aggressive calls (Schwartz 1987a).

Some North American hylid frogs also have graded aggressive calls. Male

spring peepers (Pseudacris crucifer) increase the duration of their trilled aggressive

calls in response to increases in the intensity and duration of an aggressive

call stimulus (Schwartz 1989). Several other species in the genus Pseudacris also

have trilled aggressive calls, and some of these show evidence of graded variation

similar to that seen in spring peepers (Owen 2003). Northern cricket frogs

(Acris crepitans) have a somewhat simpler system. Males produce calls with progressively

more pulses as they approach each other, but they do not have structurally

distinct aggressive calls (Wagner 1989a,c, 1992; Burmeister et al. 1999,

2002). In contrast to many other species, these changes in call structure actually

make the calls more attractive to females, rather than less attractive (Kime et al.

2004). Hence, these calls may convey aggressive messages to males, or they may

be a form of escalated competition among males for the attention of females, or

both. Multinote aggressive calls are characteristic of several species of Caribbean

robber frogs in the genus Eleutherodactylus, although the extent to which these

calls are graded is not clear (Stewart and Rand 1991; Stewart and Bishop 1994;

Michael 1997; Ovaska and Caldbeck 1997b; O’Brien 2002).

In the Old World, graded aggressive calls have been described in several clades

of frogs, although most species have not been studied in as much detail as the

New World species. Examples include Australian ground froglets (Geocrinia) and

crowned toadlets (Pseudophryne; Pengilley 1971; Littlejohn and Harrison 1985),

African reed frogs (Hyperolius) and spiny reed Frogs (Afrixalus; Backwell 1988;

Grafe 1995), and Asian Bubble-nest Frogs (Philautus; Arak 1983a). Some frogs

exhibit graded variation in both advertisement and aggressive calls. Males of the

Nicobar frog (Fejervarya nicobariensis) from Malaysia produce multinote advertisement

calls with 1 to 6 click notes, but when males are calling in close proximity,
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Figure 3.5. Graded aggressive calls of the Panamanian treefrog Hyla ebraccata. (A)

Oscillograms of four aggressive calls recorded from the same male, showing a gradual

increase in the duration of the introductory note and reduction in the duration and number

of secondary click notes. Call (a) was given at the longest distance between males; call

(d) was given at the shortest distance. (B) Duration of introductory notes of aggressive

calls as a function of the distance between interacting males. Numbers at the bottom of

each column are sample sizes. Recordings by Kentwood D. Wells. Data from Wells and

Schwartz 1984b.
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Figure 3.6. Complex vocal repertoire of Boophis madagascariensis. Oscillograms are

shown on top of each part, sound spectrograms on the bottom. For the first set of calls

(a)–(e), the time scale on the sound spectrograms has been magnified to show details of

call structure. Time scales are the same for oscillograms and sound spectrograms for all

other calls: (a) toc note; (b) short click note; (c) short rip note; (d) loud click note; (e)

tonelike note; (f) long rip note; (g) creak note; (h)–(p) iambic notes with increasing number

of pulses. Males give iambic notes more frequently in response to playbacks of conspecific

calls, and these may represent a graded aggressive call system. Reprinted from Narins

et al. (2000), Fig. 3, p. 287 with the permission of Cambridge University Press.
they produce up to 25 notes (Jehle and Arak 1998). Males in dense choruses

give distinctly different squawklike aggressive calls, and these sometimes are followed

by a series of clicklike notes similar to those in the advertisement calls.

These compound calls apparently represent transition calls that convey an aggressive

message to other males while retaining notes attractive to females. A rhacophorid

treefrog from Thailand, the Javan whipping frog (Polypedates

leucomystax), has a repertoire of at least 12 distinct call types, many consisting

of trains of pulses or clicks that appear to function as aggressive signals (Christensen-

Dalsgaard et al. 2002). The Madagascar bright-eyed frog (Boophis madagascariensis)

has an even more variable vocal repertoire of at least 28 different

types of calls, although most of these appear to be variants of a single call type

that differ in the number of notes and pulses produced (Narins et al. 2000). The

most variable call types often were given in response to playbacks of similar notes

at high intensities and have many of the characteristics of the graded aggressive

calls seen in other species (Fig. 3.6).

4. Chorusing Behavior

Many frogs and toads form aggregations in which males call to attract mates

(Zelick et al. 1999; Gerhardt and Huber 2002). The term “chorus” is used here

to describe any group of signaling animals (Gerhardt and Huber 2002), without

specifying the spatial distribution or call timing relationships among individual

males (Brush and Narins 1989). Choruses can both facilitate and impede communication

between males and females. The acoustic environment of a chorus

can be complex because of the spatial distribution of males, intense competition

for mates, high levels of background noise, and temporal overlap among calls of

neighboring males. The close proximity of calling males allows females to

quickly assess multiple mates and may promote vocal competition among males

(Wiley and Poston 1996). Males can acquire information about the capabilities

of rivals that can be used when adopting perch sites, mating tactics (Humfeld

2003), or calling tactics (Wells 1988). However, a loud chorus also can make

signal detection, localization, discrimination, and interpretation difficult

(Wollerman and Wiley 2002a,b). For example, the call preferences of females

in the field or in experiments using multispeaker designs that mimic the sonic

complexity of natural choruses often differ from those in simple two-choice

laboratory experiments (Gerhardt 1982; Telford et al. 1989; Márquez and Bosch

1997; Schwartz et al. 2001). Within a chorus, however, some females may be

better able than others to discriminate among males because of differences in the

local acoustic environment (Gerhardt and Klump 1988; Schwartz and Gerhardt

1989). The presence of calling heterospecific anurans may also create opportunities

for mismatings and wasted reproductive effort (Gerhardt 1994; Pfennig

et al. 2000; Gerhardt and Schwartz 2001).
4.1 Choruses as Venues for Communication Networks

and Competition

Anuran choruses allow for the exchange of information between numerous signalers

and receivers, and choruses can be considered “communication networks”

(McGregor and Peake 2000; Grafe 2005), rich in “public information” (Valone

and Templeton 2002; Danchin et al. 2004). A network of signalers can affect

the temporal dynamics of male calling behavior and the elaboration of male

vocalizations. For example, playbacks of calls typically increase the calling

effort of male receivers (see Table 9.1 in Gerhardt and Huber 2002), as manifested

in increased calling rate, call complexity, or call duration. The sounds

produced by a chorus can stimulate males to call (Schwartz 1991), with some

minimum number of males being necessary to initiate and maintain chorusing

activity (Brooke et al. 2000). Where many males can hear one another, calling

efforts of individual males may rapidly escalate as a chain reaction occurs among

signalers. This rapid escalation in male calling effort should facilitate comparison

of potential mates by females (Wiley and Poston 1996), possibly outweighing

any disadvantages imposed by masking and degradation of signals in the

chorus.

Eavesdropping refers to “extracting information from signaling interactions

between others” (McGregor and Peake 2000), and the network environment

clearly makes possible eavesdropping by both males and females (Grafe 2005).

Eavesdropping has not been studied experimentally in anurans, so we can only

speculate on how it might affect their behavior. Males can acquire information

on the capabilities of their competitors (Johnstone 2001), and they may detect

nearby females as a result of a change in the calling behavior of a neighbor. For

example, in Hyla versicolor, a male dramatically increases both call duration and

calling effort when it detects a female. This change sometimes triggers similar

changes in the calling behavior of neighbors (Schwartz et al. unpubl. data). Controlled

experiments are needed to exclude the possibility that such neighbors are

responding to the calls of their neighbors and not to cues produced by the female.

Female-induced elevation in calling also may be exploited by satellite males, who

may move towards females or even to begin to call (Grafe 2005). Nonsatellites

also could take advantage of acoustic cues by moving towards individuals about

to mate. Therefore, the low amplitude of courtship calls of some species could

reduce the likelihood that satellite males will intercept females (Given 1993a).

Satellites or less capable calling males may move to sites where more vigorous

callers are likely to attract females (Pfennig et al. 2000, Gerhardt and Huber 2002,

Humfeld 2003), as proposed in “hot-shot” models of lek evolution (Höglund and

Alatalo 1995).

Females that eavesdrop on aggressive exchanges between males could utilize

public information to select winners (McGregor and Peake 2000; Danchin et al.

2004) and so augment information supplied in advertisement calls with that

transmitted in signals that are generally unattractive to females (the aggressive

call).
4.2 Agonistic Interactions and Male Spacing

The use of aggressive vocalizations, including graded aggressive calls, was discussed

in an earlier section. In most frogs, males seek to maintain some mininum

distance between themselves and their nearest neighbors. Competition for calling

sites can be mediated by both aggressive calling and actual fighting (Wells 1988;

Gerhardt and Huber 2002). Male frogs apparently assess the proximity of competitors

by the intensity of their calls (Wilczynski and Brenowitz 1988; Brenowitz

1989; Gerhardt et al. 1989; Marshall et al. 2003). Murphy and Floyd (2005) found

that male barking treefrogs (Hyla gratiosa) entering low-density choruses spaced

themselves farther from the louder of two speakers broadcasting advertisement

calls than they did in high chorus densities. This difference could be because males

have more difficulty gauging relative call intensities in high-density situations

(perhaps due to noise-induced masking and threshold shifts; Schwartz and

Gerhardt 1998). The increased proximity of calling males also could have made it

hard for males to distance themselves from a speaker (Murphy and Floyd, 2005).

In many species, aggressive interactions tend to occur early in the evening as

males sort out spatial relationships in the chorus (e.g., Wells and Bard 1987;

Backwell 1988). Aggressive interactions probably are less costly at this time

because females typically arrive later at night (Backwell 1988; Murphy 1999;

Gerhardt and Huber 2002). This is important, because aggressive calls often are

less attractive to females than are advertisement calls (Oldham and Gerhardt

1975; Schwartz and Wells 1985; Wells and Bard 1987; Backwell 1988; Grafe

1995; Brenowitz and Rose 1999; Marshall et al. 2003).

During the course of an evening, males may habituate to the calls of near neighbors,

making them less likely to engage in costly aggressive interactions

(Brenowitz and Rose 1999). Marshall et al. (2003) found that after just 10 min of

advertisement call broadcasts (at 4 and 8 dB above the prestimulus aggressive

threshold) to male spring peepers (Pseudacris crucifer), aggressive call thresholds

were elevated nearly 10 dB. Qualitatively similar data were obtained for the

Pacific treefrog (P. regilla; Brenowitz and Rose 1994; Rose and Brenowitz 1997).

One important consequence of such plasticity is that on nights when large

numbers of males enter the chorus, the percapita frequency of agonistic interactions

and intermale distances may be relatively low. Thus, there is not only a

synergistic relationship but also a dynamic interaction between spacing and

aggression that largely explains the shifting spatial distribution of males in choruses

over time. Stable choruses may develop not only when male attendance at

a breeding site is low but also when it is high (Rose and Brenowitz 2002). At a

proximate level, it appears that short-term habituation to specific callers, rather

than adaptation of the auditory system, is sufficient to explain the experimental

results with P. crucifer and P. regilla, as males responded with aggressive calls

when the advertisement call stimulus was changed to aggressive calls. However,

it seems reasonable that neural threshold shifts (Narins and Zelick 1988; Schwartz

and Gerhardt 1998) also contribute to lower aggressive thresholds when background

noise levels in the chorus are high.
Discrimination between the calls of familiar neighbors and unfamiliar

“strangers” has been demonstrated in the green frog (Rana clamitans) (Owen and

Perrill 1998), bullfrog (R. catesbeiana) (Davis 1987), and Beebe’s rocket frog

(Colostethus beebei) (Bourne et al. 2001). Bullfrogs habituate to the calls originating

from a particular location, as reflected by a reduced tendency to give

aggressive calls or approach the caller. Habituation also could explain why bullfrogs

are more likely to answer calls of distant males than those of near neighbors

(Boatright-Horowitz et al. 2000). Nevertheless, males become disinihibited

if the spectral characteristics of the vocalization are altered by 10% during playback

tests, or if the source of the calls is moved (Bee and Gerhardt 2001). Potential

recognition cues also include fine temporal call features and even the pattern

of variation of call features within males (Bee 2004).

4.3 Advertisement Call Plasticity

Competition among males for the attention of females often results in considerable

plasticity in advertisement calling, with males modifying their calls in ways

that increase the signal-to-noise ratio of their vocalizations or make their calls

more attractive to females. For example, males often respond to the calls of others

by increasing the energy content of their signals by elevating calling rate, call

duration, or call complexity (Wells 1988, 2001; see Table 9.1 in Gerhardt and

Huber 2002 for examples and exceptions). Males of some species alter call dominant

frequency or the distribution of spectral energy (Lopez et al. 1988; Wagner

1989a, 1992; Bee and Perrill 1996; Howard and Young 1998; Given 1999) and

adjust call amplitude (Lopez et al. 1988). Many of these changes are presumed

to increase a male’s relative attractiveness to females (Ryan and Keddy-Hector

1992; Andersson 1994; Halliday and Tejedo 1995; Sullivan et al. 1995). This

hypothesis has been supported by phonotaxis experiments in which gravid

females were presented with acoustic alternatives broadcast from speakers in a

laboratory arena (e.g., Ryan 1980) or in the field (e.g., Schwartz et al. 2001).

Additional support comes from observations of mate choice in nature (e.g.,

Passmore et al. 1992; Schwartz et al. 1995; Grafe 1997) or artificial choruses with

real males (Schwartz et al. 2001). For example, computer-based monitoring of

choruses of male Hyla microcephala confirmed that males with the highest rates

of note production were the first to attract females (Schwartz et al. 1995). Males

of this species tend to match the number of notes in their calls during pairwise

interactions (Schwartz 1986).

Approximate note matching has been reported in other species as well (Arak

1983a; Pallett and Passmore 1988; Jehle and Arak 1998; Gerhardt et al. 2000a)

and may be a way for males to fine-tune calling effort to match that of their closest

competitors. Males are expected to expend only the minimum energy necessary

to nullify another caller’s advantage (Arak 1983a; Jehle and Arak 1998; Benedix

and Narins 1999). Such behavior also could reduce a male’s risk of predation

(Tuttle and Ryan 1981; Zuk and Kolluro 1998; Gerhardt and Huber 2002, page

2004). In the Australian red-legged froglet (Crinia georgiana), males responded
to playbacks of calls from two speakers as if they were summing the notes from

these different sources (Gerhardt et al. 2000a). Therefore males appeared to

expend more energy than was necessary to surpass the calling performance of

individual rivals. This behavior probably reflects erroneous auditory grouping

(see Farris et al. 2002) and thus a failure of test males to take thorough advantage

of available spatial information. In C. georgiana, males that produce more

notes per call do not necessarily gain a mating advantage (Smith and Roberts

2003). There also are different signaling routes to mating success in this species:

large males did best when they produced more pulses in the first notes of their

calls, whereas smaller males did best when they called at high rates.

Broadcasts of low-frequency calls that resemble those produced by large males

can induce males to move away from a speaker (e.g., Arak 1983b), and the frequency

shifts observed in the calls of some species may be an attempt by males

to dupe rivals into misjudging their size. For example, the playback tests of Bee

et al. (2000) indicate that such a bluffing strategy is conditional in green frogs,

Rana clamitans, depending on the relative size of the interactants. Alternatively,

spectral changes may honestly communicate size or size-independent fighting

ability (Wagner 1992).

In some species, a subset of males may reduce or stop calling when exposed

to the calls of another male (Gerhardt and Huber 2002; Humfeld 2003; Tobias et

al. 2004). Males also may adopt satellite tactics and attempt to parasitize the

calling efforts of other males (Halliday and Tejedo 1995). Such behavior probably

represents an attempt by individuals to minimize energy expenditure for either

mate attraction or aggression in the face of superior competition. In explosive

breeders, very high chorus densities may cause males to cease vocal activity altogether

and actively search for females (Wells 1977a; Halliday and Tejedo 1995).

Socially mediated changes in calls or calling behavior may render signals

inherently more attractive to females (Wells 1988; Ryan and Keddy-Hector 1992;

Sullivan et al. 1995; Schwartz 2001; Gerhardt and Huber 2002), but could these

alterations improve a male’s odds of mating in other ways? One possibility is that

such changes modify the redundancy of signals and so improve signal detection

and localizability, and reduce recognition errors by receivers under noisy conditions

(Wiley 1983; Bradbury and Verhencamp 1998; Ronacher 2000; Narins

et al. 2000). Kime (2001) tested and rejected the hypothesis that call complexity

reduces masking vulnerability in the northern cricket frog (Acris crepitans), and

the Túngara frog (Physalaemus pustulosus). Males of the former species cluster

their calls within “call groups” and typically add calls to these groups, as well as

the number of pulses per call, in response to the calls of other males (Wagner

1989b; Burmeister et al. 1999). Male P. pustulosus produce FM “whines” to

which they append a variable number of chuck notes following acoustic stimulation

by neighbors (Ryan 1980). Although females of both species find calls with

greater complexity more attractive (Ryan 1980; Wagner 1991), these changes did

not enhance signal efficacy in noise (Kime 2001).

Schwartz et al. (2001, 2002) hypothesized that call-induced increases in call

duration and accompanying reductions in calling rate in Hyla versicolor are
related to the increased threat of acoustic interference in larger choruses. In this

species, pulse shape and the duration of pulses and interpulse intervals have a

strong impact on the relative attractiveness of calls (Gerhardt 2001; Schul and

Bush 2002) and can easily be obscured during call overlap. Females also exhibit

strong discrimination against very short calls (Gerhardt et al. 2000b; Schwartz

et al. 2001), and they prefer long calls delivered at a low rate to short calls delivered

at a high rate. Therefore, by giving long calls, even at a low rate, in an

acoustically cluttered environment a male may increase the chances that there

will be a sufficient number of call pulses and interpulse intervals clear of call

overlap to attract a female. Preliminary data on male call overlap (Schwartz et

al. 2001, 2002) were consistent with the hypothesis, and more focused experiments

to test the idea are in progress. In addition, experiments to test whether

longer calls are more easily detected in chorus noise are underway. The threat of

call overlap also could explain why males of E. coqui increase call duration (albeit

to a much smaller degree than H. versicolor) in response to the vocalizations of

conspecifics. Benedix and Narins (1999) suggested that by shifting to longer calls,

a male compensates for constraints on calling rate imposed in choruses by the

reduced number of available quiet intervals into which a male could insert his

calls without interference. Male frogs also could increase the detectability and

attractiveness of vocalizations under noisy conditions by increasing signal amplitude.

This has been reported for Puerto Rican white-lipped frogs (Leptodactylus

albilabris) (Lopez et al. 1988), but whether this is a general response to background

noise is not known.

4.4 Patterns of Call Timing

Call interaction between males is a dynamic process and the timing relationships

between males typically are fluid and change in response to the ambient acoustics

or the level of male–male competition. Accordingly, leader–follower relationships

may shift during chorusing (Moore et al. 1989; Bosch and Marquez 2001;

Gerhardt and Huber 2002; Grafe 2003), yielding timing patterns that temporarily

are perceived as alternating, synchronized, or partially overlapping (Fig. 3.7).

Nevertheless, at particular spatial and temporal scales (Schwartz and Wells 1985;

Given 1993b; Boatright-Horowitz et al. 2000), certain call timing patterns may

dominate and a variety of hypotheses is available to explain such behavior at both

proximate and ultimate levels (Greenfield 2002; Gerhardt and Huber 2002).

At a coarse temporal scale, call-timing shifts may occur in response to the calls

of other species of frogs. For example, Littlejohn and Martin (1969) reported that

males of one species of myobatrachid frog with especially long calls inhibited

calling by another species with shorter calls. Schwartz and Wells (1983a,b)

reported similar behavior in Panamanian tree frogs. Calling by males of Hyla

ebraccata was inhibited by chorusing of groups of nearby H. microcephala or H.

phlebodes. For H. ebraccata, these two species are especially potent sources of

interference. Hyla microcephala calls in dense aggregations and employs calls

with many notes. Even pairs of H. phlebodes can produce rapid-fire sequences
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Figure 3.7. Diagram of several possible types of vocal interaction between neighboring

males in a frog chorus. (A) Calls consist of relatively long notes given at regular intervals,

with the calls of the second male precisely alternated with those of the first. (B) Calls

consist of relatively long notes given at regular intervals, with the calls of the second male

starting immediately after the end of the first male’s calls. (C) Calls consist of a variable

number of closely spaced short notes, with individual notes of the second male’s calls

alternating with those of the first male. The result is minimal acoustic interference and relatively

precise matching of the number of call notes. (D) Calls consist of a variable number

of short notes. Calls of the second male are given immediately after the entire sequence

of notes of the first male has ended, with fairly precise matching of the number of call

notes. (E) Calls are trills made up of a rapid series of short pulses. Calls are overlapped

with no attempt to avoid acoustic interference.
of alternating multinote calls that briefly monopolize the “air-time” for vocal

advertisement. Males of H. ebraccata exploit silent periods when calling by these

species subsides. This is most obvious during interactions with H. microcephala,

because males of this species chorus in a roughly cyclical pattern in which bouts

of vocal activity lasting about 5 to 25 seconds alternate with periods of inactivity

of comparable duration.

The roughly on–off or cyclical pattern of chorusing observed in H. microcephala,

sometimes referred to as unison bout singing (Greenfield and Shaw

1983; Schwartz 1991), also has been reported in other species (Duellman and

Trueb 1966; Rosen and Lemon 1974; Whitney and Krebs 1975; Schneider 1977;

Zimmerman and Bogart 1984; Ibañez 1991). The cycles last from several seconds

to a few minutes, and calling bouts are initiated when the calls of one male stimulate

others to join the chorus. Although males of some species of anurans appear

oblivious to the calls of others (e.g., the American toad, Bufo americanus, and

the southern toad, B. terrestris; Gerhardt and Huber 2002), male frogs of many

species adjust the timing of their calls or call elements relative to the individual

calls of conspecifics and heterospecifics. Thus these changes can occur extremely

rapidly (e.g., Narins 1982b; Schwartz and Wells 1985; Narins and Zelick 1988;

Grafe, 2003) and typically involve either abbreviating or elongating the call

period in response to specific calls or call elements of neighbors (Klump and

Gerhardt 1992). The outcome of the behavior is often called alternation and males

of some species may even interleave notes of multipart calls (or calls of call

groups) with those of other males (Schwartz and Wells 1984a; Schwartz and

Wells 1985; Grafe 2003; Fig. 3.8). However, alternation between pairs of males

may be inconsistent and so result in some acoustic interference (e.g., Schwartz

et al. 2002; Gerhardt and Huber 2002). Moreover, in vocal dyads among heterospecifics,

there may be species asymmetries in responsiveness (e.g., between

the two species of gray treefrogs, H. versicolor and H. chrysoscelis, Marshall

2004).

Hyla microcephala males provide an excellent example of how selection has

acted at different levels to shape call timing in a noisy assemblage of calling

males. Males produce multinote calls and are stimulated to call and add notes to

their calls in response to vocalizations. Chorusing by even a small number of

males can be quite noisy, and the calls of males frequently overlap, but when

overlap occurs, the constituent notes of neighboring males usually do not. Rather,

notes of each interacting male are timed so as to fall within the internote intervals

of the other male (Schwartz and Wells 1985; Schwartz 1993). The resulting

pattern of note alternation is facilitated by mutual inhibition of note production

by each note of the neighbor (Fig. 3.8B). Accordingly, during call overlap

between two males, each male will lengthen an inter-note interval when the note

of the other male falls with the interval. Conversely, during call overlap, the drop

in sound intensity accompanying the end of each interrupting note triggers a male

to produce his next note. The ability to rapidly interleave notes is also present in

Hyla phlebodes, although this occurs without concomitant changes in internote

intervals (Schwartz and Wells 1984b; Fig. 3.8A). Precise note alternation may be
difficult to achieve, as there are males of other species that produce multinote

calls that fail to exhibit note alternation (reviewed in Grafe 2003).
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Figure 3.8. Two males of (a) Hyla phlebodes alternating notes within multinote calls

(recordings by Kentwood D. Wells and Joshua J. Schwartz). (b) Same for Hyla microcephala,

showing an increase in internote intervals (in ms) in overlapped portions of the

calls (modified from Schwartz and Wells 1985; reproduced by permission of the American

Society of Ichthyologists and Herpetologists). (c) Pair of Kassina kuvangensis males

alternating calls within “call groups” (modified from Grafe 2005, Fig. 13.1, p. 281;

reprinted with the permission of Cambridge University Press). Males of H. microcephala

and K. kuvangensis also alter the spacing between their notes or calls, respectively, in

response to the signal elements of alternating competitors.
Obviously, in a chorus with many males, pairwise note-by-note timing would

not be an effective means to reduce acoustic interference. The solution adopted

by H. microcephala is to adjust note timing with respect to only a male’s loudest

(and nearest) one or two neighbors in the chorus while ignoring (for note-timing

purposes) the notes of more distant individuals (Schwartz 1993). This behavior

has been referred to as “selective attention” and was first reported in frogs by

Brush and Narins (1989) in their study of Eleutherodactylus coqui. Greenfield

and Rand (2000) described similar behavior in Physalaemus pustulosus and

further demonstrated that the “rules” frogs use to delimit their zone of selective

attention are flexible enough to accommodate the dynamic nature of frog choruses.

A combination of chorus monitoring and playback tests with interrupting

stimuli indicated that such flexibility also characterizes selective attention in Hyla

microcephala. Nevertheless, additional work on the relative importance of spatial

and intensity cues are clearly needed.

The gray treefrog (H. versicolor) does not exhibit a comparable pattern of

selective attention. In pairwise interactions, males significantly reduced call

overlap, but this was not so in groups of three to eight males (Schwartz et al.

2001). Moreover, adjacent males overlapped calls more than did more widely

separated individuals. It is possible that these findings were an artifact of the

testing environment: an artificial pond with males equally spaced around the pond

perimeter. With the additional spatial cues and more pronounced intensity differences

present in a natural chorus, male behavior might be similar to that of the

aforementioned species. Another possible explanation is that males of H. versicolor

are not as severely penalized when calls overlap as are some other species.

Schwartz and Gerhardt (1995) found that spatial separation of interfering call

sources mitigated the effects of acoustic interference. This was not the case with

the smaller species H. microcephala (Schwartz 1993), however. As discussed

above, an intriguing possibility is that males rely on changes in call duration and

rate, rather than selective attention, to compensate for the increased risk of call

overlap in dense choruses.

Some species of frogs appear to time their calls so that they are more likely to

overlap than to alternate (e.g., Ryan 1986; Ibañez 1993; Grafe 1999). At a proximate

level, such (approximate) synchrony on a fine-scale may occur via callperiod

changes induced by a neighbor’s call that falls in a certain time-window

after the subject’s call (Gerhardt and Huber 2002; Greenfield 2002). Alternatively,

signal detection may trigger a short-latency vocal response that may or may not

occur before the stimulating call has ended (Fig. 3.9A). For example, calling by

males of the brown running frog (Kassina fusca) from West Africa is triggered

by the onset of conspecific calls, leading to overlap (Fig. 3.9B), and the offset of

some heterospecific calls, leading to alternation (Grafe 1999). In Hyla ebraccata,

signals with a rapid rise time are especially effective in eliciting short-latency

vocal responses (Schwartz and Wells 1984a). In H. microcephala, such soundinduced

stimulation evidently occurs in conjunction with sound-induced
inhibition. As mentioned previously, note production also is stimulated by a drop

in sound intensity following the end of a neighbor’s note (Schwartz 1993; also

see Zelick and Narins 1983 for another report of this phenomenon). Thus interacting

males overlap calls but rapidly alternate the notes within their calls. Elucidating

the neural mechanisms controlling this behavior will be both challenging

and fascinating.
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Figure 3.9. (A) Call timing between two males of Hyla ebraccata, resulting in the

primary note of the following male overlapping a secondary note of the leading male.

Recordings by Kentwood D. Wells and Joshua J. Schwartz. (B) Call overlap between two

males of Kassina fusca. The histogram shows the distribution of call latencies of one male

to the calls of the other male. The dashed box gives the duration of male calls and encloses

a box plot giving the median, interquartile range, and 10th and 90th percentiles of response

call latencies. Modified from Grafe 1999, Fig. 1, p. 2333; reprinted with the permission

of the Royal Society of London.
4.5 Ultimate Explanations for Call-Timing Adjustments

The relationships between the timing of male vocalizations within anuran choruses

can have a profound impact on mating success that is comparable to those

associated with call structure and rate (Schwartz 1987b; Klump and Gerhardt

1992; Grafe 1999; Schwartz et al. 2001). Background noise levels within choruses

often can be very high, and the problem of call overlap and masking interference

can be ameliorated if males adjust the timing of their calls relative to

those of other individuals. As described above, the time scale of these adjustments

may be flexible and relate to the nature of the source of acoustic interference.

For example, males of Hyla ebraccata may adjust the fine-scale timing

of their calls in a way that reduces overlap with the individual calls of males of

H. microcephala or alternate with groups of chorusing H. microcephala on a

coarse scale. Phonotaxis experiments showed that males of H. ebraccata

improved their chances of attracting females by avoiding call overlap with neighboring

males (Schwartz and Wells 1984a) and by concentrating calling during

quiet periods (Schwartz and Wells 1983b).

Broadcasts of chorus noise did not support the hypothesis that males of H.

microcephala periodically quiet down during unison bout singing because of an

increased threat of masking and acoustic interference (Schwartz 1991). Analysis

of muscle glycogen reserves and calling rates suggested that males periodically

stop calling to save energy and increase total calling time (Schwartz et al. 1995).

Additional factors also may be relevant. For example, cyclical patterns of activity

may emerge as a result of the intrinsic auditory sensitivities and response properties

of individuals when grouped, but have no functional basis per se (Schwartz

2001). An intriguing possibility is that cyclical calling reduces individual risk of

predation, but this hypothesis has yet to be tested.

Both competition and cooperation can occur simultaneously in choruses, and

these interactions have been invoked to explain both call synchrony and call alternation

(Greenfield 2002; Gerhardt and Huber 2002; Grafe 2005). Males reduce

the chances that their signals overlap by alternating calls, part of a general strategy

to exploit brief periods of relative quiet (Grafe 2003). On the other hand,

males may synchronize calls because the resulting overlap amplifies their signals.

This form of cooperation could be advantageous for individuals that call in areas

with chronic high background noise, such as streams (Marshall and Gerhardt,

unpublished data on canyon treefrogs, H. arenicolor). Whether males of some

anuran species gain a per capita mating advantage by elevating the signal amplitude

in this manner, or by concentrating calls in time, is unknown, but deserves
further study. However, the risk of degrading important fine-temporal information

(Schwartz 1987b) within the calls might outweigh any advantages of

improved detectability. Reduced risk of predation, perhaps when coupled with

cyclical or unpredictable bouts of chorusing, may benefit synchronizing callers.

Tuttle and Ryan (1982) presented evidence consistent with this hypothesis in their

study of the Panama cross-banded treefrog (Smilisca sila) and the frog-eating bat

Trachops cirrhosus.

Rather than being a manifestation of male–male cooperation, synchrony sometimes

may result from male–male competition for females (Greenfield 2002). In

Hyla ebraccata, rapid male vocal responses result in masking of shorter secondary

notes of a leading conspecific male with the longer primary note of a following

male (Fig. 3.9A). Tests with females demonstrated that following males

are favored under such circumstances (Wells and Schwartz 1984a). In Kassina

fusca, females also discriminate in favor of overlapping follower calls under some

relative call timing arrangements but leader calls under others (Fig. 3.9B), a result

that may be due to backward masking or a precedence effect, respectively (Grafe

1999). During interactions and playback tests, Grafe found that responding males

timed their overlapping calls to fall in a time window preferred by females.

Greenfield (2002, 2005) proposed that both alternation and synchrony result

from a neural process that resets a male’s call-timing following perception of

another male’s call. This call-timing change can increase the likelihood that a

male’s calls will occupy a leading position relative to those of his neighbor’s.

Males that are successful in this regard may gain a mating advantage because of

an inherent response property of the auditory system of many species known as

the precedence effect (for reviews see Zurek 1987, Litovskya and Colburn 1999).

In fact, computer modeling has demonstrated that “inhibitory-resetting” of calltiming

and also selective attention may be favored by selection when female mate

choice is biased by a precedence effect (Greenfield, 2005). Although the term

“precedence effect” has been applied when there is a preference for a leading

call, in auditory psychophysics the application of the term is more restricted.

Under appropriate conditions of signal duration and timing, lagging sounds will

be localized at the source of a leading sound. If this phenomenon occurs in female

frogs, the advantage to a leading male is obvious. Unfortunately, data are not

yet available to conclusively demonstrate a precedence effect in the restrictive

sense in anurans. Whatever the mechanistic explanation (e.g., precedence effect,

forward masking; Grafe 1996; Gerhardt and Huber 2002), there is growing evidence

for preferences by females for leading calls (Dyson and Passmore 1988a,b;

Klump and Gerhardt 1992; Grafe 1996; Greenfield et al. 1997; Bosch and

Marquez 2002; Marshall 2004; Schwartz unpublished data), although species are

known in which females show a follower or no order preference (Wells and

Schwartz 1984a; Ibañez 1993; Bosch and Marquez 2001; Gerhardt and Huber

2002; Grafe 2003). In fact, in some cases, leader preferences may be sufficiently

strong to counteract or reverse other preferences. For example, in the spring

peeper (Pseudacris crucifer) females show a leader preference that can tolerate
overlap, a preference is absent. Thus, the call-timing relationships that might

confer an advantage to a male are quite circumscribed in this species. Moreover,

whether some males are sufficiently consistent as leaders to achieve an advantage

and how putative female call-timing preferences respond to increasing levels

of acoustic complexity within natural choruses are currently unknown. In the gray

treefrog, Hyla versicolor, Marshall (2004) demonstrated that females prefer

leading calls only when calls, and their component pulses, overlap. Under these

circumstances, the preference is so strong that it can reverse the female aversion

to calls of H. chrysoscelis (Marshall et al., in press). Thus in mixed-species

choruses of gray treefrogs, call overlap and a leader preference could result in

mismatings and loss of fitness. In Fischer’s dwarf frog (Physalaemus fischeri

[enesefae]), call order can reverse the bias of females favoring calls with lower

dominant frequencies (Tárano and Herrera 2003).

Schwartz (1987b) and Schwartz and Rand (1991) tested three hypotheses,

using four species, for why males alternate calls. Hypothesis 1 proposed that alternation

allows interacting males to more easily hear one another. This could be

advantageous because (a) call intensity cues are used to mediate intermale

spacing and/or (b) call detection enables males to adjust their signal attractiveness

to match or exceed that of competitors. Interactive playback experiments

(Schwartz 2001) supported Hypothesis 1. Hypothesis 2 proposed that alternation

helps preserve the fine temporal structure within calls that might otherwise be

obscured or degraded by call overlap among males. This hypothesis also was supported.

Females of Hyla versicolor and H. microcephala, species with pulsatile

calls or call notes, respectively, discriminated in favor of alternating relative to

out-of-phase overlapping calls in four-speaker choice tests. Pseudacris crucifer

and Physalaemus pustulosus females failed to discriminate between calls in the

same circumstances. Both of these species lack calls consisting of pulses.

Physalaemus pustulosus has a frequency-modulated introductory “whine” in its

call that contributes to call recognition by females (Rose et al. 1988; Wilczynski

et al. 1995). Schwartz and Rand (1991) speculated that the spectral filtering

characteristics of the auditory system enable females to sufficiently discern the

downward frequency sweep of the whine, even when calls partially overlap.

Hypothesis 3 proposed that alternation facilitates the localization of call sources.

If this were the case, females of all species should have discriminated against

overlapped calls when these were presented precisely in phase. This did not occur.

Results from some other studies are also inconsistent with Hypothesis 3

(Passmore and Telford 1981; Backwell and Passmore 1991; Grafe 1996; Marquez

and Bosch 2001). Nevertheless, certain call-timing relationships (e.g., overlapped

calls with leading versus following pulses, Marshall 2004) may have an impact

on localization in a way that was not detected using the stimulus arrangements

in the aforementioned experiments.

In addition to the advantages described above for Hypothesis 1, call-timing

shifts may have an additional role during male–male interactions. Based on field

observations and results of playbacks to calling Polypedates leucomystax, Christensen-

Dalsgaard et al. (2002) recently proposed that short-latency responses are

a way for males to direct their calls to a particular individual.

5. Auditory System Features: Contributions to

Communication in Choruses

Features of the auditory system of anurans may facilitate the task of detecting,

discriminating, and localizing relevant communication signals within the often

noisy and spatially complex “real-world” acoustic environment within choruses

(Feng and Ratnam 2000). Most of these characteristics are not qualitatively

unique to members of this taxon, although evolution may have fine-tuned the

relevant attributes in ways that improve their effectiveness under biologically

relevant circumstances.

5.1 Signal Detection and Discrimination

The tuning of the peripheral auditory system of frogs tends to be well (but not

perfectly) matched to the dominant frequency of the species-specific advertisement

call and often more complex spectral patterns of call energy distribution

(Gerhardt and Schwartz 2001). In fact, the role of the anuran auditory system as

a matched filter that can improve the detection of biologically relevant signals in

the presence of background noise has long been appreciated (Capranica and Rose

1983). This filtering potential is reflected not only in audiograms (obtained at

threshold) but also in critical ratios (e.g., Narins 1982a; Moss and Simmons 1986;

Simmons 1988). Certain characteristics of the acoustic milieu of choruses may

also be exploited by central neuronal processes and so facilitate call detection.

For example, the amplitude envelope of natural background noise can be dramatically

modulated with this temporal structure correlated across sound frequencies

(Nelkan et al. 1999). In some taxa (e.g., Klump and Langemann 1995),

tone detection thresholds are reduced when embedded in noise with such structure

as compared to detection thresholds in noise lacking modulations. The actual

contribution of this “comodulation masking release (CMR)” to communication

of frogs is currently poorly understood (Goense and Feng 2003), but could be

significant in situations with considerable abiotic noise or in multispecies assemblages.

However, for most chorusing species the most potent source of background

noise is that produced by conspecifics rather than hetersopecifics with call

spectra different from their own. Thus solutions other than matched filtering or

CMR must play a part in reducing the potentially serious problems for males and

female anurans imposed by masking and call overlap. If males cannot detect the

individual calls of neighboring males they may not be able to accurately assess

the nature and intensity of competition in their vicinity and may fail to adjust

their spacing appropriately. Masking of conspecific calls may impede a female’s
ability to not only find a mate, but assess relative performance within a group of

males and so possibly more effectively improve her fitness (e.g., Welch et al.

1998).

In spite of their relatively small interaural distances (e.g., 2.5 cm, Gerhardt

and Huber 2002, p. 230), available data indicate that some anurans are able to

exploit directional cues to extract signals from the background din of a chorus

or calls of overlapping males. In Hyla cinerea, separation of speakers broadcasting

calls from those broadcasting noise facilitated both detection of advertisement

calls and discrimination of advertisement calls from aggressive calls by

females during phonotaxis experiments (Schwartz and Gerhardt 1989). Schwartz

and Gerhardt (1995) also found that separation of speakers (by 120 degrees)

broadcasting overlapping calls of Hyla versicolor elicited discrimination in their

favor relative to speakers that were not separated. The timing of the overlapped

calls was such that call interference rendered the resulting pulse pattern unattractive

(Schwartz 1987b). At each ear, separation of call sources may reduce the

strength of the auditory input contributed by one of the overlapping calls and so

facilitate encoding of an effective pulse pattern (Schwartz and Gerhardt 1995).

Interestingly, an earlier experiment with H. microcephala failed to reveal such

discrimination when speakers were separated by 120 degrees, perhaps because

the interaural separation of females in this species is less than half that of H. versicolor

(Schwartz 1993). Discrepancies between the note-timing behavior of

males during natural interactions as compared to those in response to overlapping

notes broadcast from a single speaker suggest that angular separation

of callers may contribute to the ability of H. microcephala males to selectively

time their call notes with respect to a subset of chorus members (Schwartz

1993).

The data of Schwartz and Gerhardt (1989) on green treefrogs (Hyla cinerea)

are consistent with the notion that signal discrimination is a more difficult task

than signal detection. However, under some circumstances low to moderate noise

levels within choruses may actually enhance the ability of females to discriminate

among males. Schwartz and Gerhardt (1998) found that females of

Pseudacris crucifer preferred synthetic advertisement calls of 3500 Hz to those

of 2600 Hz only in the presence of background noise (filtered to resemble that

produced by a natural chorus). Multiunit recordings from the auditory midbrain

of females suggested a likely explanation. The noise induced a desensitization

of the auditory system (this phenomenon is quite familiar to anyone who has

been to a loud rock concert) that, in turn, increased the stimulus level at which

auditory neurons would reach saturation in their firing rate. This threshold shift

was reflected not only in right-shifts in plots of neural activity versus stimulus

amplitude but also in plots of neural activity versus stimulus frequency.

Relatively flat isointensity response plots obtained at high call intensities became

peaked after exposure to noise and so resembled those obtained at low to moderate

call intensities. Perhaps most significantly, only in the presence of noise

was there a significant relationship between the frequency eliciting the maximum

multiunit neural activity and the frequency preference of individual females.
Schwartz and Gerhardt (1998) speculated that noise-induced threshold shifts may

have their greatest impact on discrimination not for females within aggregations

of conspecifics but for females attempting to discriminate males of their own

species within mixed-species assemblages (where spectral differences would be

more profound than between conspecifics). The peripheral auditory system of

anurans is particularly adept at detecting the amplitude–time envelope of sounds

and thus, through phase-locking, neurons of the eighth nerve encode modulations

in amplitude (e.g., waveform periodicity, pulses) present in the calls of many

species (Feng and Shellart 1999; Gerhardt and Huber 2002). High levels of

background noise impair this process (Simmons et al. 1992). In mammals

low-intensity noise may improve phase-locking (Rhode et al. 1978; Lewis and

Henry 1995), but whether noise might augment signal detection or discrimination

in anurans through such a mechanism is largely unknown (but see Narins

et al. 1997).

5.2 Signal Restoration

In humans (Warren 1970; Samuel 1981) and starlings (Braaten and Leary 1999),

the brain can fill in signal elements that are missing or inaudible due to the presence

of masking noise. This process, known as phonemic restoration or temporal

induction, provides an illusion of signal continuity and could potentially be

useful to anurans within loud choruses. For example, a female Hyla versicolor

might more rapidly and effectively compare the call duration of adjacent males

if she could interpolate between inaudible or obscured sections of calls that might

be overlapped by the calls of other males or the background noise of the assemblage.

This hypothesis was recently tested using phonotaxis tests using calls

containing silent gaps, portions masked by filtered noise, or interrupted by

overlapping calls (Schwartz et al. 2004). Results failed to support the presence

of a significant restorative process. Females did not “fill in” missing information

when large gaps were present, although obscuring pulses within a call with other

signals appeared less detrimental than removing pulses.

6. Summary

Anuran amphibians are unique among ectothermic tetrapods in the degree to

which they depend on acoustic communication to attract mates, advertise territory

ownership, or otherwise communicate with conspecifics. The sound production

mechanism of most frogs also is unique in that the trunk muscles involved

in forcing air out of the lungs and through the vocal chords are not used for normal

respiration. Hence, the hypertrophied muscles of male frogs can be considered a

sexually selected trait, driven by competition among males for access to females.

Anurans with very high calling rates have highly aerobic muscles with high mitochondrial

and capillary densities and often large reserves of lipids that are not
present in leg muscles. These morphological and physiological traits support the

high metabolic demands of calling. Our knowledge of the physiological, biochemical,

and morphological basis of call production is limited, however, to a

relatively small sample of anuran species and is not necessarily representative of

all anurans. There also has been relatively little research on the structure and function

of vocal sacs and how variation in vocal sac structure relates to differences

in calling behavior, or the use of vocal sacs as visual signals that complement or

amplify acoustic signals.

Many anurans produce several types of calls with different functions, although

some have relatively simply vocal repertoires. Most anurans have advertisement

calls given spontaneously by males to advertise their species identity, sexual

receptivity, and spatial location to females and to other males. Males of many

species also have distinctive aggressive calls, which sometimes are graded in a

way that allows males to modify the intensity of their aggressive message or trade

off female-attracting and male-repelling functions of their calls. Males of some

species modify advertisement calls during close-range courtship interactions with

females, and in some species, females respond with calls of their own. Both male

and female courtship calls are poorly studied and probably are much more

common than currently recognized.

Although a frog chorus often seems to be a disorganized cacophony, closer

examination often reveals complex networks of interactions among males in a

chorus. Males of many species probably attend to the calls of only a few near

neighbors, with the remaining males simply contributing to background noise.

Males respond to calls of near neighbors in ways that enable them to minimize

acoustic interference and maximize the signal-to-noise ratio of their calls. Male

frogs become habituated to particular levels of calling activity, so the acoustic

threshold for responding to other calling males changes with chorus density.

Males of some species that maintain long-term territories are able to recognize

neighbors individually and respond more aggressively toward intruding strangers

than toward familiar neighbors. Many of the acoustic interactions in choruses can

be seen as products of intense sexual selection, with males competing to outsignal

their competitors for the attention of females, often increasing rates of signaling

as chorus density increases.

Characteristics of the anuran auditory system facilitate the detection and discrimination

of biologically relevant signals. The peripheral auditory system of

both males and females is selectively tuned to the frequencies of conspecific calls,

allowing the frogs to filter out heterospecific calls broadcast on other frequency

bands. Upward shifts in auditory response thresholds and directional cues aid

communication by some species within noisy chorus environments. Although

background noise can interfere with call discrimination, males of some species

exhibit enhanced signal discrimination in the presence of low to moderate levels

of background noise. This may be particularly important in mixed-species choruses

in which heterospecific calls elevate levels of background noise, but are

mostly broadcast on different frequency bands from conspecific calls.
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