Dr. P.V. Viswanath 

d  
Financial Markets 
d  Financial MarketsMoney Market: The Market for Short Term Borrowing/ LendingThe money market refers to shortterm marketable, liquid, lowrisk debt securities. Capital markets include longerterm and riskier securities. Treasury SecuritiesTbills represent promises of the government to the holder to pay a certain amount at a future date, usually within a year. Investors buy the bills at a discount from the government from the stated maturity value. The return to the holder is the difference between the stated value received at maturity and the price paid in the beginning. Tbills are usually quoted using the bank discount yield. , where FV is the face value of the bill, P is the price of the bill, and n is the number of days left to maturity on the bill. This is equal to the number of days left to maturity on the trade day less the one busines day allowed for payment, following the skipday settlement convention. The bondequivalent yield on the bill is computed as The effective annual yield on the bill is computed as minus 1. Example: Consider the following bills from the Wall Street Journal, quoted as of midafternoon, Oct. 12, 1999.
We can use the ask banker's discount quote to get the price. The price, P, would satisfy the equation 0.0432 = [(100P)/100](360/16). Hence, P = 99.808 per $100; so if the investor bought $1m. worth of bills, the payoff at the end of the 16 days would be $1m./0.99808 = $1,001,923.70. We can now use this price of 99.808 in the bondequivalent yield formula. We would find that [(10099.808)/99.808](365/16) = 0.0439. The effective annual yield can be computed as (1.0019237)^{(365/16)} = 1.0448, or a rate of 4.48% per year. Links related to Treasury Securities You may also want to check these other links on Treasury Securities:
Stock Market IndexesUsing the following data, we will see how different kinds of market indexes are constructed:
Return on CocaCola: 64.5/63.75  1 = 1.18% Dow Jones Average (price weighted average) The Dow, which represents 30 large "bluechip" corporations, was originally computed as the simple average of the prices of the stocks in the index. However, to ensure that the average did not change when there was a stock split, there were some adjustments to the weights, and hence to the divisor. The percentage change in the Dow measures the return on a portfolio that holds one share in each stock. The amount of money invested in each stock is equal to the price of that stock. . The following example uses the data in the table above, and assumes that the weight of each stock is equal to one.
If Coca Cola splits as of the end of day 2, then we need to adjust the divisor (currently 2), so that the value of the index does not change. This is necessary, if we presume that the stock split has not affected the "level" of the market. Assuming that the split simply halved the price of Coca Cola’s stock, the new divisor, D, must satisfy the equation (32.25+132.375)/D = 98.4375; i.e. D = 1.67238. As of January 29, 1998, the divisor was equal to 0.25 Although we have chosen to depict the index as the average price of a Dow stock, the index is meant to simply represent the "level" of the market. Consequently, we could multiply all index values by a constant, without changing the information in the index. Note, however, that because of the nature of the construction of the Dow, the changes in the Dow Jones Index do not represent changes in the value of any portfolio. (See the article in the Economist, "A Poor Average," May 26, 2001, in the Investments section of the Media Articles page.) S&P 500 Stock Index (marketvalue weighted average) Represents a broadbased index of 500 stocks. The Index is effectively the total market value of all the stocks in the index on each day. Measures the return on a portfolio that invests an amount in each stock proportional to the market value of the outstanding shares.
The Nasdaq Composite Index is another marketvalue weighted index. Equally weighted indexes Measures the value of a portfolio that invests an equal amount in each stock at each point in time. The percentage change in the index does not correspond to the return on any buyandhold portfolio. For example, on day 1, to achieve the goal of investing an equal number of dollars in each stock, if we were to invest $50 in each stock, we would have to buy 50/63.75 = 0.7843 units of stock 1 and 50/135.25 = 0.3697 units of stock 2. The total portfolio values are given below
This percentage price change is equal to the simple average of the returns on the two stocks, (1.18 + (2.13))/2 = 0.47. Hence the new index value would be 100(10.0047) or 99.526. On day 2, the same number of shares in each stock would no longer be an equallyweighted portfolio, since the Microsoft shares would be worth 0.3697(132.375) or $48.94, while the CocaCola shares would be worth 0.7843(64.5) = $50.59. Hence the next index value is computed by taking the simple average of the returns on the two stocks from day 2 to day 3 and grossing the index by that amount. For example, if Microsoft traded at 133 on day 3 and CocaCola at 65, their respective returns would be 0.47% (133/132.375) and 0.78% (65/64.5  1); the simple average is 0.63%, and 99.526(1.0063) = 100.1491, which would be the next index value. Value Line Geometric Average Index The index is computed as the geometric average of the prices of the stocks in the index. The percentage change in the index is equal to the equally weighted geometric average of the performance of about 1700 firms. Does not correspond to the return on any portfolio. Downward biased estimate of the return on an equallyweighted portfolio.

